Author: Zenghu Li
Publisher: Springer Science & Business Media
ISBN: 3642150047
Category : Mathematics
Languages : en
Pages : 356
Book Description
Measure-valued branching processes arise as high density limits of branching particle systems. The Dawson-Watanabe superprocess is a special class of those. The author constructs superprocesses with Borel right underlying motions and general branching mechanisms and shows the existence of their Borel right realizations. He then uses transformations to derive the existence and regularity of several different forms of the superprocesses. This treatment simplifies the constructions and gives useful perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The most important feature of the book is the systematic treatment of immigration superprocesses and generalized Ornstein--Uhlenbeck processes based on skew convolution semigroups. The volume addresses researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.
Measure-Valued Branching Markov Processes
Author: Zenghu Li
Publisher: Springer Science & Business Media
ISBN: 3642150047
Category : Mathematics
Languages : en
Pages : 356
Book Description
Measure-valued branching processes arise as high density limits of branching particle systems. The Dawson-Watanabe superprocess is a special class of those. The author constructs superprocesses with Borel right underlying motions and general branching mechanisms and shows the existence of their Borel right realizations. He then uses transformations to derive the existence and regularity of several different forms of the superprocesses. This treatment simplifies the constructions and gives useful perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The most important feature of the book is the systematic treatment of immigration superprocesses and generalized Ornstein--Uhlenbeck processes based on skew convolution semigroups. The volume addresses researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.
Publisher: Springer Science & Business Media
ISBN: 3642150047
Category : Mathematics
Languages : en
Pages : 356
Book Description
Measure-valued branching processes arise as high density limits of branching particle systems. The Dawson-Watanabe superprocess is a special class of those. The author constructs superprocesses with Borel right underlying motions and general branching mechanisms and shows the existence of their Borel right realizations. He then uses transformations to derive the existence and regularity of several different forms of the superprocesses. This treatment simplifies the constructions and gives useful perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The most important feature of the book is the systematic treatment of immigration superprocesses and generalized Ornstein--Uhlenbeck processes based on skew convolution semigroups. The volume addresses researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.
Measure-valued Processes, Stochastic Partial Differential Equations, and Interacting Systems
Author: Donald Andrew Dawson
Publisher: American Mathematical Soc.
ISBN: 9780821870440
Category : Mathematics
Languages : en
Pages : 260
Book Description
The papers in this collection explore the connections between the rapidly developing fields of measure-valued processes, stochastic partial differential equations, and interacting particle systems, each of which has undergone profound development in recent years. Bringing together ideas and tools arising from these different sources, the papers include contributions to major directions of research in these fields, explore the interface between them, and describe newly developing research problems and methodologies. Several papers are devoted to different aspects of measure-valued branching processes (also called superprocesses). Some new classes of these processes are described, including branching in catalytic media, branching with change of mass, and multilevel branching. Sample path and spatial clumping properties of superprocesses are also studied. The papers on Fleming-Viot processes arising in population genetics include discussions of the role of genealogical structures and the application of the Dirichlet form methodology. Several papers are devoted to particle systems studied in statistical physics and to stochastic partial differential equations which arise as hydrodynamic limits of such systems. With overview articles on some of the important new developments in these areas, this book would be an ideal source for an advanced graduate course on superprocesses.
Publisher: American Mathematical Soc.
ISBN: 9780821870440
Category : Mathematics
Languages : en
Pages : 260
Book Description
The papers in this collection explore the connections between the rapidly developing fields of measure-valued processes, stochastic partial differential equations, and interacting particle systems, each of which has undergone profound development in recent years. Bringing together ideas and tools arising from these different sources, the papers include contributions to major directions of research in these fields, explore the interface between them, and describe newly developing research problems and methodologies. Several papers are devoted to different aspects of measure-valued branching processes (also called superprocesses). Some new classes of these processes are described, including branching in catalytic media, branching with change of mass, and multilevel branching. Sample path and spatial clumping properties of superprocesses are also studied. The papers on Fleming-Viot processes arising in population genetics include discussions of the role of genealogical structures and the application of the Dirichlet form methodology. Several papers are devoted to particle systems studied in statistical physics and to stochastic partial differential equations which arise as hydrodynamic limits of such systems. With overview articles on some of the important new developments in these areas, this book would be an ideal source for an advanced graduate course on superprocesses.
Branching Measure-valued Processes
Author: Evgeniĭ Borisovich Dynkin
Publisher:
ISBN:
Category :
Languages : en
Pages : 84
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 84
Book Description
An Introduction to Branching Measure-Valued Processes
Author: Evgeniĭ Borisovich Dynkin
Publisher: American Mathematical Soc.
ISBN: 0821802690
Category : Mathematics
Languages : en
Pages : 146
Book Description
For about half a century, two classes of stochastic processes---Gaussian processes and processes with independent increments---have played an important role in the development of stochastic analysis and its applications. During the last decade, a third class---branching measure-valued (BMV) processes---has also been the subject of much research. A common feature of all three classes is that their finite-dimensional distributions are infinitely divisible, allowing the use of the powerful analytic tool of Laplace (or Fourier) transforms. All three classes, in an infinite-dimensional setting, provide means for study of physical systems with infinitely many degrees of freedom. This is the first monograph devoted to the theory of BMV processes. Dynkin first constructs a large class of BMV processes, called superprocesses, by passing to the limit from branching particle systems. Then he proves that, under certain restrictions, a general BMV process is a superprocess. A special chapter is devoted to the connections between superprocesses and a class of nonlinear partial differential equations recently discovered by Dynkin.
Publisher: American Mathematical Soc.
ISBN: 0821802690
Category : Mathematics
Languages : en
Pages : 146
Book Description
For about half a century, two classes of stochastic processes---Gaussian processes and processes with independent increments---have played an important role in the development of stochastic analysis and its applications. During the last decade, a third class---branching measure-valued (BMV) processes---has also been the subject of much research. A common feature of all three classes is that their finite-dimensional distributions are infinitely divisible, allowing the use of the powerful analytic tool of Laplace (or Fourier) transforms. All three classes, in an infinite-dimensional setting, provide means for study of physical systems with infinitely many degrees of freedom. This is the first monograph devoted to the theory of BMV processes. Dynkin first constructs a large class of BMV processes, called superprocesses, by passing to the limit from branching particle systems. Then he proves that, under certain restrictions, a general BMV process is a superprocess. A special chapter is devoted to the connections between superprocesses and a class of nonlinear partial differential equations recently discovered by Dynkin.
Stochastic Partial Differential Equations
Author: Sergey V. Lototsky
Publisher: Springer
ISBN: 3319586475
Category : Mathematics
Languages : en
Pages : 517
Book Description
Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected to the material discussed at a particular place in the text. The questions usually ask to verify something, so that the reader already knows the answer and, if pressed for time, can move on. Accordingly, no solutions are provided, but there are often hints on how to proceed. The book will be of interest to everybody working in the area of stochastic analysis, from beginning graduate students to experts in the field.
Publisher: Springer
ISBN: 3319586475
Category : Mathematics
Languages : en
Pages : 517
Book Description
Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected to the material discussed at a particular place in the text. The questions usually ask to verify something, so that the reader already knows the answer and, if pressed for time, can move on. Accordingly, no solutions are provided, but there are often hints on how to proceed. The book will be of interest to everybody working in the area of stochastic analysis, from beginning graduate students to experts in the field.
Measure-valued Branching Processes
Author: Donald Andrew Dawson
Publisher: Department of Mathematics and Statistics, Carleton University
ISBN:
Category : Branching processes
Languages : en
Pages : 152
Book Description
Publisher: Department of Mathematics and Statistics, Carleton University
ISBN:
Category : Branching processes
Languages : en
Pages : 152
Book Description
Spatial Branching Processes, Random Snakes and Partial Differential Equations
Author: Jean-Francois Le Gall
Publisher: Birkhäuser
ISBN: 3034886837
Category : Mathematics
Languages : en
Pages : 170
Book Description
This book introduces several remarkable new probabilistic objects that combine spatial motion with a continuous branching phenomenon and are closely related to certain semilinear partial differential equations (PDE). The Brownian snake approach is used to give a powerful representation of superprocesses and also to investigate connections between superprocesses and PDEs. These are notable because almost every important probabilistic question corresponds to a significant analytic problem.
Publisher: Birkhäuser
ISBN: 3034886837
Category : Mathematics
Languages : en
Pages : 170
Book Description
This book introduces several remarkable new probabilistic objects that combine spatial motion with a continuous branching phenomenon and are closely related to certain semilinear partial differential equations (PDE). The Brownian snake approach is used to give a powerful representation of superprocesses and also to investigate connections between superprocesses and PDEs. These are notable because almost every important probabilistic question corresponds to a significant analytic problem.
Classical and Modern Branching Processes
Author: Krishna B. Athreya
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 368
Book Description
This IMA Volume in Mathematics and its Applications CLASSICAL AND MODERN BRANCHING PROCESSES is based on the proceedings with the same title and was an integral part of the 1993-94 IMA program on "Emerging Applications of Probability." We would like to thank Krishna B. Athreya and Peter J agers for their hard work in organizing this meeting and in editing the proceedings. We also take this opportunity to thank the National Science Foundation, the Army Research Office, and the National Security Agency, whose financial support made this workshop possible. A vner Friedman Robert Gulliver v PREFACE The IMA workshop on Classical and Modern Branching Processes was held during June 13-171994 as part of the IMA year on Emerging Appli cations of Probability. The organizers of the year long program identified branching processes as one of the active areas in which a workshop should be held. Krish na B. Athreya and Peter Jagers were asked to organize this. The topics covered by the workshop could broadly be divided into the following areas: 1. Tree structures and branching processes; 2. Branching random walks; 3. Measure valued branching processes; 4. Branching with dependence; 5. Large deviations in branching processes; 6. Classical branching processes.
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 368
Book Description
This IMA Volume in Mathematics and its Applications CLASSICAL AND MODERN BRANCHING PROCESSES is based on the proceedings with the same title and was an integral part of the 1993-94 IMA program on "Emerging Applications of Probability." We would like to thank Krishna B. Athreya and Peter J agers for their hard work in organizing this meeting and in editing the proceedings. We also take this opportunity to thank the National Science Foundation, the Army Research Office, and the National Security Agency, whose financial support made this workshop possible. A vner Friedman Robert Gulliver v PREFACE The IMA workshop on Classical and Modern Branching Processes was held during June 13-171994 as part of the IMA year on Emerging Appli cations of Probability. The organizers of the year long program identified branching processes as one of the active areas in which a workshop should be held. Krish na B. Athreya and Peter Jagers were asked to organize this. The topics covered by the workshop could broadly be divided into the following areas: 1. Tree structures and branching processes; 2. Branching random walks; 3. Measure valued branching processes; 4. Branching with dependence; 5. Large deviations in branching processes; 6. Classical branching processes.
Markov Processes and Potential Theory
Author:
Publisher: Academic Press
ISBN: 0080873413
Category : Mathematics
Languages : en
Pages : 325
Book Description
Markov Processes and Potential Theory
Publisher: Academic Press
ISBN: 0080873413
Category : Mathematics
Languages : en
Pages : 325
Book Description
Markov Processes and Potential Theory
An Introduction to Superprocesses
Author: Alison Etheridge
Publisher: American Mathematical Soc.
ISBN: 0821827065
Category : Mathematics
Languages : en
Pages : 201
Book Description
Over the past 20 years, the study of superprocesses has expanded into a major industry and can now be regarded as a central theme in modern probability theory. This book is intended as a rapid introduction to the subject, geared toward graduate students and researchers in stochastic analysis. A variety of different approaches to the superprocesses emerged over the last ten years. Yet no one approach superseded any others. In this book, readers are exposed to a number of different ways of thinking about the processes, and each is used to motivate some key results. The emphasis is on why results are true rather than on rigorous proof. Specific results are given, including extensive references to current literature for their general form.
Publisher: American Mathematical Soc.
ISBN: 0821827065
Category : Mathematics
Languages : en
Pages : 201
Book Description
Over the past 20 years, the study of superprocesses has expanded into a major industry and can now be regarded as a central theme in modern probability theory. This book is intended as a rapid introduction to the subject, geared toward graduate students and researchers in stochastic analysis. A variety of different approaches to the superprocesses emerged over the last ten years. Yet no one approach superseded any others. In this book, readers are exposed to a number of different ways of thinking about the processes, and each is used to motivate some key results. The emphasis is on why results are true rather than on rigorous proof. Specific results are given, including extensive references to current literature for their general form.