Author: W. Greenberg
Publisher: Birkhäuser
ISBN: 3034854781
Category : Science
Languages : en
Pages : 536
Book Description
This monograph is intended to be a reasonably self -contained and fairly complete exposition of rigorous results in abstract kinetic theory. Throughout, abstract kinetic equations refer to (an abstract formulation of) equations which describe transport of particles, momentum, energy, or, indeed, any transportable physical quantity. These include the equations of traditional (neutron) transport theory, radiative transfer, and rarefied gas dynamics, as well as a plethora of additional applications in various areas of physics, chemistry, biology and engineering. The mathematical problems addressed within the monograph deal with existence and uniqueness of solutions of initial-boundary value problems, as well as questions of positivity, continuity, growth, stability, explicit representation of solutions, and equivalence of various formulations of the transport equations under consideration. The reader is assumed to have a certain familiarity with elementary aspects of functional analysis, especially basic semigroup theory, and an effort is made to outline any more specialized topics as they are introduced. Over the past several years there has been substantial progress in developing an abstract mathematical framework for treating linear transport problems. The benefits of such an abstract theory are twofold: (i) a mathematically rigorous basis has been established for a variety of problems which were traditionally treated by somewhat heuristic distribution theory methods; and (ii) the results obtained are applicable to a great variety of disparate kinetic processes. Thus, numerous different systems of integrodifferential equations which model a variety of kinetic processes are themselves modelled by an abstract operator equation on a Hilbert (or Banach) space.
Boundary Value Problems in Abstract Kinetic Theory
Boundary Value Problems in Abstract Kinetic Theory
Author: W. Greenberg
Publisher: Birkhäuser
ISBN: 9783764317652
Category : Science
Languages : en
Pages : 0
Book Description
This monograph is intended to be a reasonably self -contained and fairly complete exposition of rigorous results in abstract kinetic theory. Throughout, abstract kinetic equations refer to (an abstract formulation of) equations which describe transport of particles, momentum, energy, or, indeed, any transportable physical quantity. These include the equations of traditional (neutron) transport theory, radiative transfer, and rarefied gas dynamics, as well as a plethora of additional applications in various areas of physics, chemistry, biology and engineering. The mathematical problems addressed within the monograph deal with existence and uniqueness of solutions of initial-boundary value problems, as well as questions of positivity, continuity, growth, stability, explicit representation of solutions, and equivalence of various formulations of the transport equations under consideration. The reader is assumed to have a certain familiarity with elementary aspects of functional analysis, especially basic semigroup theory, and an effort is made to outline any more specialized topics as they are introduced. Over the past several years there has been substantial progress in developing an abstract mathematical framework for treating linear transport problems. The benefits of such an abstract theory are twofold: (i) a mathematically rigorous basis has been established for a variety of problems which were traditionally treated by somewhat heuristic distribution theory methods; and (ii) the results obtained are applicable to a great variety of disparate kinetic processes. Thus, numerous different systems of integrodifferential equations which model a variety of kinetic processes are themselves modelled by an abstract operator equation on a Hilbert (or Banach) space.
Publisher: Birkhäuser
ISBN: 9783764317652
Category : Science
Languages : en
Pages : 0
Book Description
This monograph is intended to be a reasonably self -contained and fairly complete exposition of rigorous results in abstract kinetic theory. Throughout, abstract kinetic equations refer to (an abstract formulation of) equations which describe transport of particles, momentum, energy, or, indeed, any transportable physical quantity. These include the equations of traditional (neutron) transport theory, radiative transfer, and rarefied gas dynamics, as well as a plethora of additional applications in various areas of physics, chemistry, biology and engineering. The mathematical problems addressed within the monograph deal with existence and uniqueness of solutions of initial-boundary value problems, as well as questions of positivity, continuity, growth, stability, explicit representation of solutions, and equivalence of various formulations of the transport equations under consideration. The reader is assumed to have a certain familiarity with elementary aspects of functional analysis, especially basic semigroup theory, and an effort is made to outline any more specialized topics as they are introduced. Over the past several years there has been substantial progress in developing an abstract mathematical framework for treating linear transport problems. The benefits of such an abstract theory are twofold: (i) a mathematically rigorous basis has been established for a variety of problems which were traditionally treated by somewhat heuristic distribution theory methods; and (ii) the results obtained are applicable to a great variety of disparate kinetic processes. Thus, numerous different systems of integrodifferential equations which model a variety of kinetic processes are themselves modelled by an abstract operator equation on a Hilbert (or Banach) space.
Partially Specified Matrices and Operators: Classification, Completion, Applications
Author: Israel Gohberg
Publisher: Birkhäuser
ISBN: 3034891008
Category : Mathematics
Languages : en
Pages : 337
Book Description
This book is devoted to a new direction in linear algebra and operator theory that deals with the invariants of partially specified matrices and operators, and with the spectral analysis of their completions. The theory developed centers around two major problems concerning matrices of which part of the entries are given and the others are unspecified. The first is a classification problem and aims at a simplification of the given part with the help of admissible similarities. The results here may be seen as a far reaching generalization of the Jordan canonical form. The second problem is called the eigenvalue completion problem and asks to describe all possible eigenvalues and their multiplicities of the matrices which one obtains by filling in the unspecified entries. Both problems are also considered in an infinite dimensional operator framework. A large part of the book deals with applications to matrix theory and analysis, namely to stabilization problems in mathematical system theory, to problems of Wiener-Hopf factorization and interpolation for matrix polynomials and rational matrix functions, to the Kronecker structure theory of linear pencils, and to non everywhere defined operators. The eigenvalue completion problem has a natural associated inverse, which appears as a restriction problem. The analysis of these two problems is often simpler when a solution of the corresponding classification problem is available.
Publisher: Birkhäuser
ISBN: 3034891008
Category : Mathematics
Languages : en
Pages : 337
Book Description
This book is devoted to a new direction in linear algebra and operator theory that deals with the invariants of partially specified matrices and operators, and with the spectral analysis of their completions. The theory developed centers around two major problems concerning matrices of which part of the entries are given and the others are unspecified. The first is a classification problem and aims at a simplification of the given part with the help of admissible similarities. The results here may be seen as a far reaching generalization of the Jordan canonical form. The second problem is called the eigenvalue completion problem and asks to describe all possible eigenvalues and their multiplicities of the matrices which one obtains by filling in the unspecified entries. Both problems are also considered in an infinite dimensional operator framework. A large part of the book deals with applications to matrix theory and analysis, namely to stabilization problems in mathematical system theory, to problems of Wiener-Hopf factorization and interpolation for matrix polynomials and rational matrix functions, to the Kronecker structure theory of linear pencils, and to non everywhere defined operators. The eigenvalue completion problem has a natural associated inverse, which appears as a restriction problem. The analysis of these two problems is often simpler when a solution of the corresponding classification problem is available.
Stochastic Modelling In Biology: Relevant Mathematical Concepts And Recent Applications
Author: Tautu Petre
Publisher: #N/A
ISBN: 9814611921
Category :
Languages : en
Pages : 456
Book Description
These proceedings focus on future prospects as well as on the present status in some important areas of applied probability and mathematical biology. Some papers have educational intentions regarding the mathematical modelling of special biological situations. The workshop was the third one in Heidelberg dealing with stochastic modelling in biology, e.g., cell biology, embryology, oncology, epidemiology and genetics.
Publisher: #N/A
ISBN: 9814611921
Category :
Languages : en
Pages : 456
Book Description
These proceedings focus on future prospects as well as on the present status in some important areas of applied probability and mathematical biology. Some papers have educational intentions regarding the mathematical modelling of special biological situations. The workshop was the third one in Heidelberg dealing with stochastic modelling in biology, e.g., cell biology, embryology, oncology, epidemiology and genetics.
Encyclopaedia of Mathematics
Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 9781556080050
Category : Mathematics
Languages : en
Pages : 620
Book Description
V.1. A-B v.2. C v.3. D-Feynman Measure. v.4. Fibonaccimethod H v.5. Lituus v.6. Lobachevskii Criterion (for Convergence)-Optical Sigman-Algebra. v.7. Orbi t-Rayleigh Equation. v.8. Reaction-Diffusion Equation-Stirling Interpolation Fo rmula. v.9. Stochastic Approximation-Zygmund Class of Functions. v.10. Subject Index-Author Index.
Publisher: Springer Science & Business Media
ISBN: 9781556080050
Category : Mathematics
Languages : en
Pages : 620
Book Description
V.1. A-B v.2. C v.3. D-Feynman Measure. v.4. Fibonaccimethod H v.5. Lituus v.6. Lobachevskii Criterion (for Convergence)-Optical Sigman-Algebra. v.7. Orbi t-Rayleigh Equation. v.8. Reaction-Diffusion Equation-Stirling Interpolation Fo rmula. v.9. Stochastic Approximation-Zygmund Class of Functions. v.10. Subject Index-Author Index.
Advances in AI for Biomedical Instrumentation, Electronics and Computing
Author: Vibhav Sachan
Publisher: CRC Press
ISBN: 1040118593
Category : Technology & Engineering
Languages : en
Pages : 633
Book Description
This book contains the proceedings of 5th International Conference on Advances in AI for Biomedical Instrumentation, Electronics and Computing (ICABEC - 2023), which provided an international forum for the exchange of ideas among researchers, students, academicians, and practitioners. It presents original research papers on subjects of AI, Biomedical, Communications & Computing Systems. Some interesting topics it covers are enhancing air quality prediction using machine learning, optimization of leakage power consumption using hybrid techniques, multi-robot path planning in complex industrial dynamic environment, enhancing prediction accuracy of earthquake using machine learning algorithms and advanced machine learning models for accurate cancer diagnostics. Containing work presented by a diverse range of researchers, this book will be of interest to students and researchers in the fields of Electronics and Communication Engineering, Computer Science Engineering, Information Technology, Electrical Engineering, Electronics and Instrumentation Engineering, Computer applications and all interdisciplinary streams of Engineering Sciences.
Publisher: CRC Press
ISBN: 1040118593
Category : Technology & Engineering
Languages : en
Pages : 633
Book Description
This book contains the proceedings of 5th International Conference on Advances in AI for Biomedical Instrumentation, Electronics and Computing (ICABEC - 2023), which provided an international forum for the exchange of ideas among researchers, students, academicians, and practitioners. It presents original research papers on subjects of AI, Biomedical, Communications & Computing Systems. Some interesting topics it covers are enhancing air quality prediction using machine learning, optimization of leakage power consumption using hybrid techniques, multi-robot path planning in complex industrial dynamic environment, enhancing prediction accuracy of earthquake using machine learning algorithms and advanced machine learning models for accurate cancer diagnostics. Containing work presented by a diverse range of researchers, this book will be of interest to students and researchers in the fields of Electronics and Communication Engineering, Computer Science Engineering, Information Technology, Electrical Engineering, Electronics and Instrumentation Engineering, Computer applications and all interdisciplinary streams of Engineering Sciences.
Analytic Methods for Coagulation-Fragmentation Models, Volume I
Author: Jacek Banasiak
Publisher: CRC Press
ISBN: 1351650467
Category : Mathematics
Languages : en
Pages : 330
Book Description
Analytic Methods for Coagulation-Fragmentation Models is a two-volume set that provides a comprehensive exposition of the mathematical analysis of coagulation-fragmentation models. Initially, an in-depth survey of coagulation-fragmentation processes is presented, together with an account of relevant early results obtained on the associated model equations. These provide motivation for the subsequent detailed treatment of more up-to-date investigations which have led to significant theoretical developments on topics such as solvability and the long-term behaviour of solutions. To make the account as self-contained as possible, the mathematical tools that feature prominently in these modern treatments are introduced at appropriate places. The main theme of Volume I is the analysis of linear fragmentation models, with Volume II devoted to processes that involve the nonlinear contribution of coagulation. Features of Volume I: The main models of the theory together with their derivations and early methods of solution A detailed presentation of the operator theoretical methods and semigroup theory that play an essential role in the theory of fragmentation processes A comprehensive theory of fragmentation processes, including fragmentation with growth and decay in both the discrete and continuous particle size cases An analytical explanation of the `pathologies’ of the fragmentation equation, such as the shattering phase transition and non-uniqueness of solutions An analysis of the long-term dynamics of the discrete size fragmentation equation with growth
Publisher: CRC Press
ISBN: 1351650467
Category : Mathematics
Languages : en
Pages : 330
Book Description
Analytic Methods for Coagulation-Fragmentation Models is a two-volume set that provides a comprehensive exposition of the mathematical analysis of coagulation-fragmentation models. Initially, an in-depth survey of coagulation-fragmentation processes is presented, together with an account of relevant early results obtained on the associated model equations. These provide motivation for the subsequent detailed treatment of more up-to-date investigations which have led to significant theoretical developments on topics such as solvability and the long-term behaviour of solutions. To make the account as self-contained as possible, the mathematical tools that feature prominently in these modern treatments are introduced at appropriate places. The main theme of Volume I is the analysis of linear fragmentation models, with Volume II devoted to processes that involve the nonlinear contribution of coagulation. Features of Volume I: The main models of the theory together with their derivations and early methods of solution A detailed presentation of the operator theoretical methods and semigroup theory that play an essential role in the theory of fragmentation processes A comprehensive theory of fragmentation processes, including fragmentation with growth and decay in both the discrete and continuous particle size cases An analytical explanation of the `pathologies’ of the fragmentation equation, such as the shattering phase transition and non-uniqueness of solutions An analysis of the long-term dynamics of the discrete size fragmentation equation with growth
Lecture Notes On Mathematical Theory Of The Boltzmann Equation
Author: Nicola Bellomo
Publisher: World Scientific
ISBN: 9814500844
Category : Science
Languages : en
Pages : 273
Book Description
This is a collection of four lectures on some mathematical aspects related to the nonlinear Boltzmann equation. The following topics are dealt with: derivation of kinetic equations, qualitative analysis of the initial value problem, singular perturbation analysis towards the hydrodynamic limit and computational methods towards the solution of problems in fluid dynamics.
Publisher: World Scientific
ISBN: 9814500844
Category : Science
Languages : en
Pages : 273
Book Description
This is a collection of four lectures on some mathematical aspects related to the nonlinear Boltzmann equation. The following topics are dealt with: derivation of kinetic equations, qualitative analysis of the initial value problem, singular perturbation analysis towards the hydrodynamic limit and computational methods towards the solution of problems in fluid dynamics.
Computing Qualitatively Correct Approximations of Balance Laws
Author: Laurent Gosse
Publisher: Springer Science & Business Media
ISBN: 8847028922
Category : Mathematics
Languages : en
Pages : 346
Book Description
Substantial effort has been drawn for years onto the development of (possibly high-order) numerical techniques for the scalar homogeneous conservation law, an equation which is strongly dissipative in L1 thanks to shock wave formation. Such a dissipation property is generally lost when considering hyperbolic systems of conservation laws, or simply inhomogeneous scalar balance laws involving accretive or space-dependent source terms, because of complex wave interactions. An overall weaker dissipation can reveal intrinsic numerical weaknesses through specific nonlinear mechanisms: Hugoniot curves being deformed by local averaging steps in Godunov-type schemes, low-order errors propagating along expanding characteristics after having hit a discontinuity, exponential amplification of truncation errors in the presence of accretive source terms... This book aims at presenting rigorous derivations of different, sometimes called well-balanced, numerical schemes which succeed in reconciling high accuracy with a stronger robustness even in the aforementioned accretive contexts. It is divided into two parts: one dealing with hyperbolic systems of balance laws, such as arising from quasi-one dimensional nozzle flow computations, multiphase WKB approximation of linear Schrödinger equations, or gravitational Navier-Stokes systems. Stability results for viscosity solutions of onedimensional balance laws are sketched. The other being entirely devoted to the treatment of weakly nonlinear kinetic equations in the discrete ordinate approximation, such as the ones of radiative transfer, chemotaxis dynamics, semiconductor conduction, spray dynamics or linearized Boltzmann models. “Caseology” is one of the main techniques used in these derivations. Lagrangian techniques for filtration equations are evoked too. Two-dimensional methods are studied in the context of non-degenerate semiconductor models.
Publisher: Springer Science & Business Media
ISBN: 8847028922
Category : Mathematics
Languages : en
Pages : 346
Book Description
Substantial effort has been drawn for years onto the development of (possibly high-order) numerical techniques for the scalar homogeneous conservation law, an equation which is strongly dissipative in L1 thanks to shock wave formation. Such a dissipation property is generally lost when considering hyperbolic systems of conservation laws, or simply inhomogeneous scalar balance laws involving accretive or space-dependent source terms, because of complex wave interactions. An overall weaker dissipation can reveal intrinsic numerical weaknesses through specific nonlinear mechanisms: Hugoniot curves being deformed by local averaging steps in Godunov-type schemes, low-order errors propagating along expanding characteristics after having hit a discontinuity, exponential amplification of truncation errors in the presence of accretive source terms... This book aims at presenting rigorous derivations of different, sometimes called well-balanced, numerical schemes which succeed in reconciling high accuracy with a stronger robustness even in the aforementioned accretive contexts. It is divided into two parts: one dealing with hyperbolic systems of balance laws, such as arising from quasi-one dimensional nozzle flow computations, multiphase WKB approximation of linear Schrödinger equations, or gravitational Navier-Stokes systems. Stability results for viscosity solutions of onedimensional balance laws are sketched. The other being entirely devoted to the treatment of weakly nonlinear kinetic equations in the discrete ordinate approximation, such as the ones of radiative transfer, chemotaxis dynamics, semiconductor conduction, spray dynamics or linearized Boltzmann models. “Caseology” is one of the main techniques used in these derivations. Lagrangian techniques for filtration equations are evoked too. Two-dimensional methods are studied in the context of non-degenerate semiconductor models.
Spectral Theory and Applications of Linear Operators and Block Operator Matrices
Author: Aref Jeribi
Publisher: Springer
ISBN: 3319175661
Category : Science
Languages : en
Pages : 608
Book Description
Examining recent mathematical developments in the study of Fredholm operators, spectral theory and block operator matrices, with a rigorous treatment of classical Riesz theory of polynomially-compact operators, this volume covers both abstract and applied developments in the study of spectral theory. These topics are intimately related to the stability of underlying physical systems and play a crucial role in many branches of mathematics as well as numerous interdisciplinary applications. By studying classical Riesz theory of polynomially compact operators in order to establish the existence results of the second kind operator equations, this volume will assist the reader working to describe the spectrum, multiplicities and localization of the eigenvalues of polynomially-compact operators.
Publisher: Springer
ISBN: 3319175661
Category : Science
Languages : en
Pages : 608
Book Description
Examining recent mathematical developments in the study of Fredholm operators, spectral theory and block operator matrices, with a rigorous treatment of classical Riesz theory of polynomially-compact operators, this volume covers both abstract and applied developments in the study of spectral theory. These topics are intimately related to the stability of underlying physical systems and play a crucial role in many branches of mathematics as well as numerous interdisciplinary applications. By studying classical Riesz theory of polynomially compact operators in order to establish the existence results of the second kind operator equations, this volume will assist the reader working to describe the spectrum, multiplicities and localization of the eigenvalues of polynomially-compact operators.