Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-differential Operators

Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-differential Operators PDF Author: William Norrie Everitt
Publisher: American Mathematical Soc.
ISBN: 0821810804
Category : Mathematics
Languages : en
Pages : 201

Get Book Here

Book Description
In the classical theory of self-adjoint boundary value problems for linear ordinary differential operators there is a fundamental, but rather mysterious, interplay between the symmetric (conjugate) bilinear scalar product of the basic Hilbert space and the skew-symmetric boundary form of the associated differential expression. This book presents a new conceptual framework, leading to an effective structured method, for analysing and classifying all such self-adjoint boundary conditions. The program is carried out by introducing innovative new mathematical structures which relate the Hilbert space to a complex symplectic space. This work offers the first systematic detailed treatment in the literature of these two topics: complex symplectic spaces--their geometry and linear algebra--and quasi-differential operators.

Multi-Interval Linear Ordinary Boundary Value Problems and Complex Symplectic Algebra

Multi-Interval Linear Ordinary Boundary Value Problems and Complex Symplectic Algebra PDF Author: William Norrie Everitt
Publisher: American Mathematical Soc.
ISBN: 0821826697
Category : Mathematics
Languages : en
Pages : 79

Get Book Here

Book Description
A multi-interval quasi-differential system $\{I_{r},M_{r},w_{r}:r\in\Omega\}$ consists of a collection of real intervals, $\{I_{r}\}$, as indexed by a finite, or possibly infinite index set $\Omega$ (where $\mathrm{card} (\Omega)\geq\aleph_{0}$ is permissible), on which are assigned ordinary or quasi-differential expressions $M_{r}$ generating unbounded operators in the Hilbert function spaces $L_{r}^{2}\equiv L^{2}(I_{r};w_{r})$, where $w_{r}$ are given, non-negative weight functions. For each fixed $r\in\Omega$ assume that $M_{r}$ is Lagrange symmetric (formally self-adjoint) on $I_{r}$ and hence specifies minimal and maximal closed operators $T_{0,r}$ and $T_{1,r}$, respectively, in $L_{r}^{2}$. However the theory does not require that the corresponding deficiency indices $d_{r}^{-}$ and $d_{r}^{+}$ of $T_{0,r}$ are equal (e. g. the symplectic excess $Ex_{r}=d_{r}^{+}-d_{r}^{-}\neq 0$), in which case there will not exist any self-adjoint extensions of $T_{0,r}$ in $L_{r}^{2}$. In this paper a system Hilbert space $\mathbf{H}:=\sum_{r\,\in\,\Omega}\oplus L_{r}^{2}$ is defined (even for non-countable $\Omega$) with corresponding minimal and maximal system operators $\mathbf{T}_{0}$ and $\mathbf{T}_{1}$ in $\mathbf{H}$. Then the system deficiency indices $\mathbf{d}^{\pm} =\sum_{r\,\in\,\Omega}d_{r}^{\pm}$ are equal (system symplectic excess $Ex=0$), if and only if there exist self-adjoint extensions $\mathbf{T}$ of $\mathbf{T}_{0}$ in $\mathbf{H}$. The existence is shown of a natural bijective correspondence between the set of all such self-adjoint extensions $\mathbf{T}$ of $\mathbf{T}_{0}$, and the set of all complete Lagrangian subspaces $\mathsf{L}$ of the system boundary complex symplectic space $\mathsf{S}=\mathbf{D(T}_{1})/\mathbf{D(T}_{0})$. This result generalizes the earlier symplectic version of the celebrated GKN-Theorem for single interval systems to multi-interval systems. Examples of such complete Lagrangians, for both finite and infinite dimensional complex symplectic $\mathsf{S}$, illuminate new phenoma for the boundary value problems of multi-interval systems. These concepts have applications to many-particle systems of quantum mechanics, and to other physical problems.

Elliptic Partial Differential Operators and Symplectic Algebra

Elliptic Partial Differential Operators and Symplectic Algebra PDF Author: William Norrie Everitt
Publisher: American Mathematical Soc.
ISBN: 0821832352
Category : Mathematics
Languages : en
Pages : 130

Get Book Here

Book Description
This investigation introduces a new description and classification for the set of all self-adjoint operators (not just those defined by differential boundary conditions) which are generated by a linear elliptic partial differential expression $A(\mathbf{x}, D)=\sum_{0\, \leq\, \left s\right \, \leq\,2m}a_{s} (\mathbf{x})D DEGREES{s}\;\text{for all}\;\mathbf{x}\in\Omega$ in a region $\Omega$, with compact closure $\overline{\Omega}$ and $C DEGREES{\infty }$-smooth boundary $\partial\Omega$, in Euclidean space $\mathbb{E} DEGREES{r}$ $(r\geq2).$ The order $2m\geq2$ and the spatial dimensio

Ordinary Differential Operators

Ordinary Differential Operators PDF Author: Aiping Wang
Publisher: American Mathematical Soc.
ISBN: 1470453665
Category : Education
Languages : en
Pages : 269

Get Book Here

Book Description
In 1910 Herman Weyl published one of the most widely quoted papers of the 20th century in Analysis, which initiated the study of singular Sturm-Liouville problems. The work on the foundations of Quantum Mechanics in the 1920s and 1930s, including the proof of the spectral theorem for unbounded self-adjoint operators in Hilbert space by von Neumann and Stone, provided some of the motivation for the study of differential operators in Hilbert space with particular emphasis on self-adjoint operators and their spectrum. Since then the topic developed in several directions and many results and applications have been obtained. In this monograph the authors summarize some of these directions discussing self-adjoint, symmetric, and dissipative operators in Hilbert and Symplectic Geometry spaces. Part I of the book covers the theory of differential and quasi-differential expressions and equations, existence and uniqueness of solutions, continuous and differentiable dependence on initial data, adjoint expressions, the Lagrange Identity, minimal and maximal operators, etc. In Part II characterizations of the symmetric, self-adjoint, and dissipative boundary conditions are established. In particular, the authors prove the long standing Deficiency Index Conjecture. In Part III the symmetric and self-adjoint characterizations are extended to two-interval problems. These problems have solutions which have jump discontinuities in the interior of the underlying interval. These jumps may be infinite at singular interior points. Part IV is devoted to the construction of the regular Green's function. The construction presented differs from the usual one as found, for example, in the classical book by Coddington and Levinson.

Distributions and Operators

Distributions and Operators PDF Author: Gerd Grubb
Publisher: Springer Science & Business Media
ISBN: 0387848940
Category : Mathematics
Languages : en
Pages : 464

Get Book Here

Book Description
This book gives an introduction to distribution theory, based on the work of Schwartz and of many other people. It is the first book to present distribution theory as a standard text. Each chapter has been enhanced with many exercises and examples.

Infinite Dimensional Complex Symplectic Spaces

Infinite Dimensional Complex Symplectic Spaces PDF Author: William Norrie Everitt
Publisher: American Mathematical Soc.
ISBN: 0821835459
Category : Mathematics
Languages : en
Pages : 94

Get Book Here

Book Description
Complex symplectic spaces are non-trivial generalizations of the real symplectic spaces of classical analytical dynamics. This title presents a self-contained investigation of general complex symplectic spaces, and their Lagrangian subspaces, regardless of the finite or infinite dimensionality.

Conformally Invariant Processes in the Plane

Conformally Invariant Processes in the Plane PDF Author: Gregory F. Lawler
Publisher: American Mathematical Soc.
ISBN: 0821846248
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
Presents an introduction to the conformally invariant processes that appear as scaling limits. This book covers such topics as stochastic integration, and complex Brownian motion and measures derived from Brownian motion. It is suitable for those interested in random processes and their applications in theoretical physics.

Self-Similar Groups

Self-Similar Groups PDF Author: Volodymyr Nekrashevych
Publisher: American Mathematical Society
ISBN: 1470476916
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description
Self-similar groups (groups generated by automata) appeared initially as examples of groups that are easy to define but that enjoy exotic properties like nontrivial torsion, intermediate growth, etc. The book studies the self-similarity phenomenon in group theory and shows its intimate relation with dynamical systems and more classical self-similar structures, such as fractals, Julia sets, and self-affine tilings. The relation is established through the notions of the iterated monodromy group and the limit space, which are the central topics of the book. A wide variety of examples and different applications of self-similar groups to dynamical systems and vice versa are discussed. It is shown in particular how Julia sets can be reconstructed from the respective iterated monodromy groups and that groups with exotic properties appear now not just as isolated examples but as naturally defined iterated monodromy groups of rational functions. The book is intended to be accessible to a wide mathematical readership, including graduate students interested in group theory and dynamical systems.

Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups

Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups PDF Author: Armand Borel
Publisher: American Mathematical Soc.
ISBN: 147041225X
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
It has been nearly twenty years since the first edition of this work. In the intervening years, there has been immense progress in the use of homological algebra to construct admissible representations and in the study of arithmetic groups. This second edition is a corrected and expanded version of the original, which was an important catalyst in the expansion of the field. Besides the fundamental material on cohomology and discrete subgroups present in the first edition, this edition also contains expositions of some of the most important developments of the last two decades.

Ergodic Theory via Joinings

Ergodic Theory via Joinings PDF Author: Eli Glasner
Publisher: American Mathematical Soc.
ISBN: 1470419513
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
This book introduces modern ergodic theory. It emphasizes a new approach that relies on the technique of joining two (or more) dynamical systems. This approach has proved to be fruitful in many recent works, and this is the first time that the entire theory is presented from a joining perspective. Another new feature of the book is the presentation of basic definitions of ergodic theory in terms of the Koopman unitary representation associated with a dynamical system and the invariant mean on matrix coefficients, which exists for any acting groups, amenable or not. Accordingly, the first part of the book treats the ergodic theory for an action of an arbitrary countable group. The second part, which deals with entropy theory, is confined (for the sake of simplicity) to the classical case of a single measure-preserving transformation on a Lebesgue probability space.