Author: T.A. Cruse
Publisher: Springer Science & Business Media
ISBN: 9400913850
Category : Science
Languages : en
Pages : 171
Book Description
The Boundary Integral Equation (BIE) method has occupied me to various degrees for the past twenty-two years. The attraction of BIE analysis has been its unique combination of mathematics and practical application. The EIE method is unforgiving in its requirement for mathe matical care and its requirement for diligence in creating effective numerical algorithms. The EIE method has the ability to provide critical inSight into the mathematics that underlie one of the most powerful and useful modeling approximations ever devised--elasticity. The method has even revealed important new insights into the nature of crack tip plastic strain distributions. I believe that EIE modeling of physical problems is one of the remaining opportunities for challenging and fruitful research by those willing to apply sound mathematical discipline coupled with phys ical insight and a desire to relate the two in new ways. The monograph that follows is the summation of many of the successes of that twenty-two years, supported by the ideas and synergisms that come from working with individuals who share a common interest in engineering mathematics and their application. The focus of the monograph is on the application of EIE modeling to one of the most important of the solid mechanics disciplines--fracture mechanics. The monograph is not a trea tise on fracture mechanics, as there are many others who are far more qualified than I to expound on that topic.
Boundary Element Analysis in Computational Fracture Mechanics
Author: T.A. Cruse
Publisher: Springer Science & Business Media
ISBN: 9400913850
Category : Science
Languages : en
Pages : 171
Book Description
The Boundary Integral Equation (BIE) method has occupied me to various degrees for the past twenty-two years. The attraction of BIE analysis has been its unique combination of mathematics and practical application. The EIE method is unforgiving in its requirement for mathe matical care and its requirement for diligence in creating effective numerical algorithms. The EIE method has the ability to provide critical inSight into the mathematics that underlie one of the most powerful and useful modeling approximations ever devised--elasticity. The method has even revealed important new insights into the nature of crack tip plastic strain distributions. I believe that EIE modeling of physical problems is one of the remaining opportunities for challenging and fruitful research by those willing to apply sound mathematical discipline coupled with phys ical insight and a desire to relate the two in new ways. The monograph that follows is the summation of many of the successes of that twenty-two years, supported by the ideas and synergisms that come from working with individuals who share a common interest in engineering mathematics and their application. The focus of the monograph is on the application of EIE modeling to one of the most important of the solid mechanics disciplines--fracture mechanics. The monograph is not a trea tise on fracture mechanics, as there are many others who are far more qualified than I to expound on that topic.
Publisher: Springer Science & Business Media
ISBN: 9400913850
Category : Science
Languages : en
Pages : 171
Book Description
The Boundary Integral Equation (BIE) method has occupied me to various degrees for the past twenty-two years. The attraction of BIE analysis has been its unique combination of mathematics and practical application. The EIE method is unforgiving in its requirement for mathe matical care and its requirement for diligence in creating effective numerical algorithms. The EIE method has the ability to provide critical inSight into the mathematics that underlie one of the most powerful and useful modeling approximations ever devised--elasticity. The method has even revealed important new insights into the nature of crack tip plastic strain distributions. I believe that EIE modeling of physical problems is one of the remaining opportunities for challenging and fruitful research by those willing to apply sound mathematical discipline coupled with phys ical insight and a desire to relate the two in new ways. The monograph that follows is the summation of many of the successes of that twenty-two years, supported by the ideas and synergisms that come from working with individuals who share a common interest in engineering mathematics and their application. The focus of the monograph is on the application of EIE modeling to one of the most important of the solid mechanics disciplines--fracture mechanics. The monograph is not a trea tise on fracture mechanics, as there are many others who are far more qualified than I to expound on that topic.
The Scaled Boundary Finite Element Method
Author: John P. Wolf
Publisher: John Wiley & Sons
ISBN: 9780471486824
Category : Technology & Engineering
Languages : en
Pages : 398
Book Description
A novel computational procedure called the scaled boundary finite-element method is described which combines the advantages of the finite-element and boundary-element methods : Of the finite-element method that no fundamental solution is required and thus expanding the scope of application, for instance to anisotropic material without an increase in complexity and that singular integrals are avoided and that symmetry of the results is automatically satisfied. Of the boundary-element method that the spatial dimension is reduced by one as only the boundary is discretized with surface finite elements, reducing the data preparation and computational efforts, that the boundary conditions at infinity are satisfied exactly and that no approximation other than that of the surface finite elements on the boundary is introduced. In addition, the scaled boundary finite-element method presents appealing features of its own : an analytical solution inside the domain is achieved, permitting for instance accurate stress intensity factors to be determined directly and no spatial discretization of certain free and fixed boundaries and interfaces between different materials is required. In addition, the scaled boundary finite-element method combines the advantages of the analytical and numerical approaches. In the directions parallel to the boundary, where the behaviour is, in general, smooth, the weighted-residual approximation of finite elements applies, leading to convergence in the finite-element sense. In the third (radial) direction, the procedure is analytical, permitting e.g. stress-intensity factors to be determined directly based on their definition or the boundary conditions at infinity to be satisfied exactly. In a nutshell, the scaled boundary finite-element method is a semi-analytical fundamental-solution-less boundary-element method based on finite elements. The best of both worlds is achieved in two ways: with respect to the analytical and numerical methods and with respect to the finite-element and boundary-element methods within the numerical procedures. The book serves two goals: Part I is an elementary text, without any prerequisites, a primer, but which using a simple model problem still covers all aspects of the method and Part II presents a detailed derivation of the general case of statics, elastodynamics and diffusion.
Publisher: John Wiley & Sons
ISBN: 9780471486824
Category : Technology & Engineering
Languages : en
Pages : 398
Book Description
A novel computational procedure called the scaled boundary finite-element method is described which combines the advantages of the finite-element and boundary-element methods : Of the finite-element method that no fundamental solution is required and thus expanding the scope of application, for instance to anisotropic material without an increase in complexity and that singular integrals are avoided and that symmetry of the results is automatically satisfied. Of the boundary-element method that the spatial dimension is reduced by one as only the boundary is discretized with surface finite elements, reducing the data preparation and computational efforts, that the boundary conditions at infinity are satisfied exactly and that no approximation other than that of the surface finite elements on the boundary is introduced. In addition, the scaled boundary finite-element method presents appealing features of its own : an analytical solution inside the domain is achieved, permitting for instance accurate stress intensity factors to be determined directly and no spatial discretization of certain free and fixed boundaries and interfaces between different materials is required. In addition, the scaled boundary finite-element method combines the advantages of the analytical and numerical approaches. In the directions parallel to the boundary, where the behaviour is, in general, smooth, the weighted-residual approximation of finite elements applies, leading to convergence in the finite-element sense. In the third (radial) direction, the procedure is analytical, permitting e.g. stress-intensity factors to be determined directly based on their definition or the boundary conditions at infinity to be satisfied exactly. In a nutshell, the scaled boundary finite-element method is a semi-analytical fundamental-solution-less boundary-element method based on finite elements. The best of both worlds is achieved in two ways: with respect to the analytical and numerical methods and with respect to the finite-element and boundary-element methods within the numerical procedures. The book serves two goals: Part I is an elementary text, without any prerequisites, a primer, but which using a simple model problem still covers all aspects of the method and Part II presents a detailed derivation of the general case of statics, elastodynamics and diffusion.
Stress Analysis by Boundary Element Methods
Author: J. Balaš
Publisher: Elsevier
ISBN: 148329174X
Category : Technology & Engineering
Languages : en
Pages : 699
Book Description
The boundary element method is an extremely versatile and powerful tool of computational mechanics which has already become a popular alternative to the well established finite element method. This book presents a comprehensive and up-to-date treatise on the boundary element method (BEM) in its applications to various fields of continuum mechanics such as: elastostatics, elastodynamics, thermoelasticity, micropolar elasticity, elastoplasticity, viscoelasticity, theory of plates and stress analysis by hybrid methods. The fundamental solution of governing differential equations, integral representations of the displacement and temperature fields, regularized integral representations of the stress field and heat flux, boundary integral equations and boundary integro-differential equations are derived. Besides the mathematical foundations of the boundary integral method, the book deals with practical applications of this method. Most of the applications concentrate mainly on the computational problems of fracture mechanics. The method has been found to be very efficient in stress-intensity factor computations. Also included are developments made by the authors in the boundary integral formulation of thermoelasticity, micropolar elasticity, viscoelasticity, plate theory, hybrid method in elasticity and solution of crack problems. The solution of boundary-value problems of thermoelasticity and micropolar thermoelasticity is formulated for the first time as the solution of pure boundary problems. A new unified formulation of general crack problems is presented by integro-differential equations.
Publisher: Elsevier
ISBN: 148329174X
Category : Technology & Engineering
Languages : en
Pages : 699
Book Description
The boundary element method is an extremely versatile and powerful tool of computational mechanics which has already become a popular alternative to the well established finite element method. This book presents a comprehensive and up-to-date treatise on the boundary element method (BEM) in its applications to various fields of continuum mechanics such as: elastostatics, elastodynamics, thermoelasticity, micropolar elasticity, elastoplasticity, viscoelasticity, theory of plates and stress analysis by hybrid methods. The fundamental solution of governing differential equations, integral representations of the displacement and temperature fields, regularized integral representations of the stress field and heat flux, boundary integral equations and boundary integro-differential equations are derived. Besides the mathematical foundations of the boundary integral method, the book deals with practical applications of this method. Most of the applications concentrate mainly on the computational problems of fracture mechanics. The method has been found to be very efficient in stress-intensity factor computations. Also included are developments made by the authors in the boundary integral formulation of thermoelasticity, micropolar elasticity, viscoelasticity, plate theory, hybrid method in elasticity and solution of crack problems. The solution of boundary-value problems of thermoelasticity and micropolar thermoelasticity is formulated for the first time as the solution of pure boundary problems. A new unified formulation of general crack problems is presented by integro-differential equations.
Green's Functions and Boundary Element Analysis for Modeling of Mechanical Behavior of Advanced Materials
Author: J. R. Berger
Publisher: DIANE Publishing
ISBN: 0788148184
Category :
Languages : en
Pages : 174
Book Description
Demonstrates the potential of Green's functions & boundary element methods in solving a broad range of practical materials science problems. Papers include: Accurate Discretization of Integral Operators, Boundary Element Analysis of Bimaterials Using Anisotropic Elastic Green's Functions, Mechanical Properties of Metal-Matrix Composites, Approximate Operators for Boundary Integral Equations in Transient Elastodynamics, Simulation of the Electrochemical Machining Process Using a 2D Fundamental Singular Solution, Elastic Green's Functions for Anisotropic Solids, & more. Charts & tables.
Publisher: DIANE Publishing
ISBN: 0788148184
Category :
Languages : en
Pages : 174
Book Description
Demonstrates the potential of Green's functions & boundary element methods in solving a broad range of practical materials science problems. Papers include: Accurate Discretization of Integral Operators, Boundary Element Analysis of Bimaterials Using Anisotropic Elastic Green's Functions, Mechanical Properties of Metal-Matrix Composites, Approximate Operators for Boundary Integral Equations in Transient Elastodynamics, Simulation of the Electrochemical Machining Process Using a 2D Fundamental Singular Solution, Elastic Green's Functions for Anisotropic Solids, & more. Charts & tables.
Computational Methods in the Mechanics of Fracture
Author: Satya N. Atluri
Publisher: North Holland
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 434
Book Description
This volume not only covers the fundamental concepts of fracture mechanics, but also the computational methodologies necessary for practical engineering designs aimed at fracture control. It gives a concise summary of various fracture theories: linear elastic, elastic-plastic, and dynamic fracture mechanics of metals and composites. Novel numerical methods (finite element and boundary element) that enable the treatment of complicated engineering problems are emphasized. Examined are problems of linear elastic fracture of metallic and non-metallic composite materials, three-dimensional problems of surface flaws, elastic-plastic fracture, stable crack growth, and dynamic crack propagation. A comprehensive outline of the energetic approach and energy integrals on fracture mechanics is also given. Contents: Preface. Parts: I. Chapters: 1. Fracture: Mechanics or Art? (F. Erdogan). II. 2. Linear Elastic Fracture Mechanics (A.S. Kobayashi). 3. Elastic-Plastic Fracture (Quasi-Static) (S.N. Atluri and A.S. Kobayashi). 4. Dynamic Crack Propagation in Solids (L.B. Freund). 5. Energetic Approaches and Path-Independent Integrals in Fracture Mechanics (S.N. Atluri). III. 6.
Publisher: North Holland
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 434
Book Description
This volume not only covers the fundamental concepts of fracture mechanics, but also the computational methodologies necessary for practical engineering designs aimed at fracture control. It gives a concise summary of various fracture theories: linear elastic, elastic-plastic, and dynamic fracture mechanics of metals and composites. Novel numerical methods (finite element and boundary element) that enable the treatment of complicated engineering problems are emphasized. Examined are problems of linear elastic fracture of metallic and non-metallic composite materials, three-dimensional problems of surface flaws, elastic-plastic fracture, stable crack growth, and dynamic crack propagation. A comprehensive outline of the energetic approach and energy integrals on fracture mechanics is also given. Contents: Preface. Parts: I. Chapters: 1. Fracture: Mechanics or Art? (F. Erdogan). II. 2. Linear Elastic Fracture Mechanics (A.S. Kobayashi). 3. Elastic-Plastic Fracture (Quasi-Static) (S.N. Atluri and A.S. Kobayashi). 4. Dynamic Crack Propagation in Solids (L.B. Freund). 5. Energetic Approaches and Path-Independent Integrals in Fracture Mechanics (S.N. Atluri). III. 6.
The Scaled Boundary Finite Element Method
Author: Chongmin Song
Publisher: John Wiley & Sons
ISBN: 1119388155
Category : Science
Languages : en
Pages : 500
Book Description
An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.
Publisher: John Wiley & Sons
ISBN: 1119388155
Category : Science
Languages : en
Pages : 500
Book Description
An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.
Boundary Elements and Other Mesh Reduction Methods Twenty-eight
Author: C. A. Brebbia
Publisher: WIT Press
ISBN: 1845641647
Category : Mathematics
Languages : en
Pages : 361
Book Description
This volume contains papers from the World Conference on Boundary Elements and other Mesh Reduction Methods, an internationally recognized forum for the dissemination of the latest advances on Mesh Reduction Techniques and their applications in sciences and engineering. The book publishes articles dealing with computational issues and software developments in addition to those of a more theoretical nature. Engineers and scientists within the areas of numerical analysis, boundary elements and meshless methods will find the text invaluable. Topics include: Advances in Mesh Reduction Methods; Meshless Techniques; Advanced Formulations; Dual Reciprocity Method; Modified Trefftz Method; Fundamental Solution Method; Damage Mechanics and Fracture; Advanced Structural Applications; Dynamics and Vibrations; Material Characterization; Acoustics; Electrical Engineering and Electromagnetics; Heat and Mass Transfer; Fluid Mechanics Problems; Wave Propagation; Inverse Problems and Computational Techniques.
Publisher: WIT Press
ISBN: 1845641647
Category : Mathematics
Languages : en
Pages : 361
Book Description
This volume contains papers from the World Conference on Boundary Elements and other Mesh Reduction Methods, an internationally recognized forum for the dissemination of the latest advances on Mesh Reduction Techniques and their applications in sciences and engineering. The book publishes articles dealing with computational issues and software developments in addition to those of a more theoretical nature. Engineers and scientists within the areas of numerical analysis, boundary elements and meshless methods will find the text invaluable. Topics include: Advances in Mesh Reduction Methods; Meshless Techniques; Advanced Formulations; Dual Reciprocity Method; Modified Trefftz Method; Fundamental Solution Method; Damage Mechanics and Fracture; Advanced Structural Applications; Dynamics and Vibrations; Material Characterization; Acoustics; Electrical Engineering and Electromagnetics; Heat and Mass Transfer; Fluid Mechanics Problems; Wave Propagation; Inverse Problems and Computational Techniques.
Fast Multipole Boundary Element Method
Author: Yijun Liu
Publisher: Cambridge University Press
ISBN: 113947944X
Category : Technology & Engineering
Languages : en
Pages : 255
Book Description
The fast multipole method is one of the most important algorithms in computing developed in the 20th century. Along with the fast multipole method, the boundary element method (BEM) has also emerged as a powerful method for modeling large-scale problems. BEM models with millions of unknowns on the boundary can now be solved on desktop computers using the fast multipole BEM. This is the first book on the fast multipole BEM, which brings together the classical theories in BEM formulations and the recent development of the fast multipole method. Two- and three-dimensional potential, elastostatic, Stokes flow, and acoustic wave problems are covered, supplemented with exercise problems and computer source codes. Applications in modeling nanocomposite materials, bio-materials, fuel cells, acoustic waves, and image-based simulations are demonstrated to show the potential of the fast multipole BEM. Enables students, researchers, and engineers to learn the BEM and fast multipole method from a single source.
Publisher: Cambridge University Press
ISBN: 113947944X
Category : Technology & Engineering
Languages : en
Pages : 255
Book Description
The fast multipole method is one of the most important algorithms in computing developed in the 20th century. Along with the fast multipole method, the boundary element method (BEM) has also emerged as a powerful method for modeling large-scale problems. BEM models with millions of unknowns on the boundary can now be solved on desktop computers using the fast multipole BEM. This is the first book on the fast multipole BEM, which brings together the classical theories in BEM formulations and the recent development of the fast multipole method. Two- and three-dimensional potential, elastostatic, Stokes flow, and acoustic wave problems are covered, supplemented with exercise problems and computer source codes. Applications in modeling nanocomposite materials, bio-materials, fuel cells, acoustic waves, and image-based simulations are demonstrated to show the potential of the fast multipole BEM. Enables students, researchers, and engineers to learn the BEM and fast multipole method from a single source.
Recent Advances in Fracture Mechanics
Author: W.G. Knauss
Publisher: Springer Science & Business Media
ISBN: 9401728542
Category : Science
Languages : en
Pages : 432
Book Description
The papers in this volume represent a considerable cross-section of the field of fracture mechanics, a testimony to the breadth of interest that Mel and Max Williams' friends share with them. Several are expanded versions of papers that were given in special sessions honoring them at the 1997 Ninth International Conference on Fracture Mechanics in Sydney, Australia. The subjects treated in this volume can be classified as follows: dynamic fracture problems as viewed primarily from a classical continuum point of view; analysis of relatively general crack geometrics; fracture problems of polymers and other relatively ductile materials; scaling rules that allow extension of results obtained at one size to be translated into behavior at different size scales; problems dealing with interactions that produce complex stress fields; fracture problems directly appropriate to composite materials; analysis of stress concentrations in anisotropic, elastic solids; and the problem of cracks in thin plates bending. This volume will be of interest to engineers and scientists working on all aspects of the physics and mechanics of fracture.
Publisher: Springer Science & Business Media
ISBN: 9401728542
Category : Science
Languages : en
Pages : 432
Book Description
The papers in this volume represent a considerable cross-section of the field of fracture mechanics, a testimony to the breadth of interest that Mel and Max Williams' friends share with them. Several are expanded versions of papers that were given in special sessions honoring them at the 1997 Ninth International Conference on Fracture Mechanics in Sydney, Australia. The subjects treated in this volume can be classified as follows: dynamic fracture problems as viewed primarily from a classical continuum point of view; analysis of relatively general crack geometrics; fracture problems of polymers and other relatively ductile materials; scaling rules that allow extension of results obtained at one size to be translated into behavior at different size scales; problems dealing with interactions that produce complex stress fields; fracture problems directly appropriate to composite materials; analysis of stress concentrations in anisotropic, elastic solids; and the problem of cracks in thin plates bending. This volume will be of interest to engineers and scientists working on all aspects of the physics and mechanics of fracture.
Computational Elasticity
Author: Mohammed Ameen
Publisher: Alpha Science Int'l Ltd.
ISBN: 9781842652015
Category : Boundary element methods
Languages : en
Pages : 540
Book Description
Publisher: Alpha Science Int'l Ltd.
ISBN: 9781842652015
Category : Boundary element methods
Languages : en
Pages : 540
Book Description