Author: Robert Sumner Sigafoos
Publisher:
ISBN:
Category : Botany
Languages : en
Pages : 28
Book Description
A description of botanical methods used to determine dates of recession of three glaciers at Mount Ranier, Washington.
Botanical Evidence of the Modern History of Nisqually Glacier, Washington
Author: Robert Sumner Sigafoos
Publisher:
ISBN:
Category : Botany
Languages : en
Pages : 28
Book Description
A description of botanical methods used to determine dates of recession of three glaciers at Mount Ranier, Washington.
Publisher:
ISBN:
Category : Botany
Languages : en
Pages : 28
Book Description
A description of botanical methods used to determine dates of recession of three glaciers at Mount Ranier, Washington.
Geological Survey Professional Paper
Author:
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 462
Book Description
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 462
Book Description
The Little Ice Age
Author: Jean M. Grove
Publisher: Routledge
ISBN: 1134980663
Category : Science
Languages : en
Pages : 594
Book Description
The evidence for the Little Ice Age, the most important fluctuation in global climate in historical times, is most dramatically represented by the advance of mountain glaciers in the sixteenth and seventeenth centuries and their retreat since about 1850. The effects on the landscape and the daily life of people have been particularly apparent in Norway and the Alps. This major book places an extensive body of material relating to Europe, in the form of documentary evidence of the history of the glaciers, their portrayal in paintings and maps, and measurements made by scientists and others, within a global perspective. It shows that the glacial history of mountain regions all over the world displays a similar pattern of climatic events. Furthermore, fluctuations on a comparable scale have occurred at intervals of a millennium or two throughout the last ten thousand years since the ice caps of North America and northwest Europe melted away. This is the first scholarly work devoted to the Little Ice Age, by an author whose research experience of the subject has been extensive. This book includes large numbers of maps, diagrams and photographs, many not published elsewhere, and very full bibliographies. It is a definitive work on the subject, and an excellent focus for the work of economic and social historians as well as glaciologists, climatologists, geographers, and specialists in mountain environment.
Publisher: Routledge
ISBN: 1134980663
Category : Science
Languages : en
Pages : 594
Book Description
The evidence for the Little Ice Age, the most important fluctuation in global climate in historical times, is most dramatically represented by the advance of mountain glaciers in the sixteenth and seventeenth centuries and their retreat since about 1850. The effects on the landscape and the daily life of people have been particularly apparent in Norway and the Alps. This major book places an extensive body of material relating to Europe, in the form of documentary evidence of the history of the glaciers, their portrayal in paintings and maps, and measurements made by scientists and others, within a global perspective. It shows that the glacial history of mountain regions all over the world displays a similar pattern of climatic events. Furthermore, fluctuations on a comparable scale have occurred at intervals of a millennium or two throughout the last ten thousand years since the ice caps of North America and northwest Europe melted away. This is the first scholarly work devoted to the Little Ice Age, by an author whose research experience of the subject has been extensive. This book includes large numbers of maps, diagrams and photographs, many not published elsewhere, and very full bibliographies. It is a definitive work on the subject, and an excellent focus for the work of economic and social historians as well as glaciologists, climatologists, geographers, and specialists in mountain environment.
Western Europe, Soviet Union, Southern Asia, Latin American, United States (excluding Alaska), Western Canada
Author: American Geographical Society of New York. Department of Exploration and Field Research
Publisher:
ISBN:
Category : Glaciers
Languages : en
Pages : 708
Book Description
Publisher:
ISBN:
Category : Glaciers
Languages : en
Pages : 708
Book Description
Surficial Geology of Mount Rainier National Park, Washington
Author: Dwight Raymond Crandell
Publisher:
ISBN:
Category : Alluvium
Languages : en
Pages : 552
Book Description
Publisher:
ISBN:
Category : Alluvium
Languages : en
Pages : 552
Book Description
U.S. Geological Survey Professional Paper
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 308
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 308
Book Description
Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington
Author: Jonathan A. Czuba
Publisher: U.S. Department of the Interior, U.S. Geological Survey
ISBN:
Category :
Languages : en
Pages : 150
Book Description
A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes from the mountain indicates that rockfalls, glaciers, debris flows, and main-stem flooding act sequentially to deliver sediment from Mount Rainier to river reaches in the Puget Lowland over decadal time scales. Greater-than-normal runoff was associated with cool phases of the Pacific Decadal Oscillation. Streamflow-gaging station data from four unregulated rivers directly draining Mount Rainier indicated no statistically significant trends of increasing peak flows over the course of the 20th century. The total sediment load of the upper Nisqually River from 1945 to 2011 was determined to be 1,200,000±180,000 tonnes/yr. The suspended-sediment load in the lower Puyallup River at Puyallup, Washington, was 860,000±300,000 tonnes/yr between 1978 and 1994, but the long-term load for the Puyallup River likely is about 1,000,000±400,000 tonnes/yr. Using a coarse-resolution bedload transport relation, the long-term average bedload was estimated to be about 30,000 tonnes/yr in the lower White River near Auburn, Washington, which was four times greater than bedload in the Puyallup River and an order of magnitude greater than bedload in the Carbon River. Analyses indicate a general increase in the sediment loads in Mount Rainier rivers in the 1990s and 2000s relative to the time period from the 1960s to 1980s. Data are insufficient, however, to determine definitively if post-1990 increases in sediment production and transport from Mount Rainier represent a statistically significant increase relative to sediment-load values typical from Mount Rainier during the entire 20th century. One-dimensional river-hydraulic and sediment-transport models simulated the entrainment, transport, attrition, and deposition of bed material. Simulations showed that bed-material loads were largest for the Nisqually River and smallest for the Carbon River. The models were used to simulate how increases in sediment supply to rivers transport through the river systems and affect lowland reaches. For each simulation, the input sediment pulse evolved through a combination of translation, dispersion, and attrition as it moved downstream. The characteristic transport times for the median sediment-size pulse to arrive downstream for the Nisqually, Carbon, Puyallup, and White Rivers were approximately 70, 300, 80, and 60 years, respectively.
Publisher: U.S. Department of the Interior, U.S. Geological Survey
ISBN:
Category :
Languages : en
Pages : 150
Book Description
A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes from the mountain indicates that rockfalls, glaciers, debris flows, and main-stem flooding act sequentially to deliver sediment from Mount Rainier to river reaches in the Puget Lowland over decadal time scales. Greater-than-normal runoff was associated with cool phases of the Pacific Decadal Oscillation. Streamflow-gaging station data from four unregulated rivers directly draining Mount Rainier indicated no statistically significant trends of increasing peak flows over the course of the 20th century. The total sediment load of the upper Nisqually River from 1945 to 2011 was determined to be 1,200,000±180,000 tonnes/yr. The suspended-sediment load in the lower Puyallup River at Puyallup, Washington, was 860,000±300,000 tonnes/yr between 1978 and 1994, but the long-term load for the Puyallup River likely is about 1,000,000±400,000 tonnes/yr. Using a coarse-resolution bedload transport relation, the long-term average bedload was estimated to be about 30,000 tonnes/yr in the lower White River near Auburn, Washington, which was four times greater than bedload in the Puyallup River and an order of magnitude greater than bedload in the Carbon River. Analyses indicate a general increase in the sediment loads in Mount Rainier rivers in the 1990s and 2000s relative to the time period from the 1960s to 1980s. Data are insufficient, however, to determine definitively if post-1990 increases in sediment production and transport from Mount Rainier represent a statistically significant increase relative to sediment-load values typical from Mount Rainier during the entire 20th century. One-dimensional river-hydraulic and sediment-transport models simulated the entrainment, transport, attrition, and deposition of bed material. Simulations showed that bed-material loads were largest for the Nisqually River and smallest for the Carbon River. The models were used to simulate how increases in sediment supply to rivers transport through the river systems and affect lowland reaches. For each simulation, the input sediment pulse evolved through a combination of translation, dispersion, and attrition as it moved downstream. The characteristic transport times for the median sediment-size pulse to arrive downstream for the Nisqually, Carbon, Puyallup, and White Rivers were approximately 70, 300, 80, and 60 years, respectively.
Encyclopedia of Quaternary Science
Author:
Publisher: Elsevier
ISBN: 0080547826
Category : Science
Languages : en
Pages : 7184
Book Description
The quaternary sciences constitute a dynamic, multidisciplinary field of research that has been growing in scientific and societal importance in recent years. This branch of the Earth sciences links ancient prehistory to modern environments. Quaternary terrestrial sediments contain the fossil remains of existing species of flora and fauna, and their immediate predecessors. Quaternary science plays an integral part in such important issues for modern society as groundwater resources and contamination, sea level change, geologic hazards (earthquakes, volcanic eruptions, tsunamis), and soil erosion. With over 360 articles and 2,600 pages, many in full-color, the Encyclopedia of Quaternary Science provides broad ranging, up-to-date articles on all of the major topics in the field. Written by a team of leading experts and under the guidance of an international editorial board, the articles are at a level that allows undergraduate students to understand the material, while providing active researchers with the latest information in the field. Also available online via ScienceDirect (2006) – featuring extensive browsing, searching, and internal cross-referencing between articles in the work, plus dynamic linking to journal articles and abstract databases, making navigation flexible and easy. For more information, pricing options and availability visit www.info.sciencedirect.com. 360 individual articles written by prominent international authorities, encompassing all important aspects of quaternary science Each entry provides comprehensive, in-depth treatment of an overview topic and presented in a functional, clear and uniform layout Reference section provides guidence for further research on the topic Article text supported by full-color photos, drawings, tables, and other visual material Writing level is suited to both the expert and non-expert
Publisher: Elsevier
ISBN: 0080547826
Category : Science
Languages : en
Pages : 7184
Book Description
The quaternary sciences constitute a dynamic, multidisciplinary field of research that has been growing in scientific and societal importance in recent years. This branch of the Earth sciences links ancient prehistory to modern environments. Quaternary terrestrial sediments contain the fossil remains of existing species of flora and fauna, and their immediate predecessors. Quaternary science plays an integral part in such important issues for modern society as groundwater resources and contamination, sea level change, geologic hazards (earthquakes, volcanic eruptions, tsunamis), and soil erosion. With over 360 articles and 2,600 pages, many in full-color, the Encyclopedia of Quaternary Science provides broad ranging, up-to-date articles on all of the major topics in the field. Written by a team of leading experts and under the guidance of an international editorial board, the articles are at a level that allows undergraduate students to understand the material, while providing active researchers with the latest information in the field. Also available online via ScienceDirect (2006) – featuring extensive browsing, searching, and internal cross-referencing between articles in the work, plus dynamic linking to journal articles and abstract databases, making navigation flexible and easy. For more information, pricing options and availability visit www.info.sciencedirect.com. 360 individual articles written by prominent international authorities, encompassing all important aspects of quaternary science Each entry provides comprehensive, in-depth treatment of an overview topic and presented in a functional, clear and uniform layout Reference section provides guidence for further research on the topic Article text supported by full-color photos, drawings, tables, and other visual material Writing level is suited to both the expert and non-expert
The Ecology of Recently-deglaciated Terrain
Author: John A. Matthews
Publisher: Cambridge University Press
ISBN: 0521361095
Category : Nature
Languages : en
Pages : 414
Book Description
The first comprehensive review of the available information on the ecology of recently-deglaciated terrain, this volume evaluates critically the methodology employed in such studies.
Publisher: Cambridge University Press
ISBN: 0521361095
Category : Nature
Languages : en
Pages : 414
Book Description
The first comprehensive review of the available information on the ecology of recently-deglaciated terrain, this volume evaluates critically the methodology employed in such studies.
Tools in Fluvial Geomorphology
Author: G. Mathias Kondolf
Publisher: John Wiley & Sons
ISBN: 1118648579
Category : Science
Languages : en
Pages : 560
Book Description
Fluvial Geomorphology studies the biophysical processes acting in rivers, and the sediment patterns and landforms resulting from them. It is a discipline of synthesis, with roots in geology, geography, and river engineering, and with strong interactions with allied fields such as ecology, engineering and landscape architecture. This book comprehensively reviews tools used in fluvial geomorphology, at a level suitable to guide the selection of research methods for a given question. Presenting an integrated approach to the interdisciplinary nature of the subject, it provides guidance for researchers and professionals on the tools available to answer questions on river restoration and management. Thoroughly updated since the first edition in 2003 by experts in their subfields, the book presents state-of-the-art tools that have revolutionized fluvial geomorphology in recent decades, such as physical and numerical modelling, remote sensing and GIS, new field techniques, advances in dating, tracking and sourcing, statistical approaches as well as more traditional methods such as the systems framework, stratigraphic analysis, form and flow characterisation and historical analysis. This book: Covers five main types of geomorphological questions and their associated tools: historical framework; spatial framework; chemical, physical and biological methods; analysis of processes and forms; and future understanding framework. Provides guidance on advantages and limitations of different tools for different applications, data sources, equipment and supplies needed, and case studies illustrating their application in an integrated perspective. It is an essential resource for researchers and professional geomorphologists, hydrologists, geologists, engineers, planners, and ecologists concerned with river management, conservation and restoration. It is a useful supplementary textbook for upper level undergraduate and graduate courses in Geography, Geology, Environmental Science, Civil and Environmental Engineering, and interdisciplinary courses in river management and restoration.
Publisher: John Wiley & Sons
ISBN: 1118648579
Category : Science
Languages : en
Pages : 560
Book Description
Fluvial Geomorphology studies the biophysical processes acting in rivers, and the sediment patterns and landforms resulting from them. It is a discipline of synthesis, with roots in geology, geography, and river engineering, and with strong interactions with allied fields such as ecology, engineering and landscape architecture. This book comprehensively reviews tools used in fluvial geomorphology, at a level suitable to guide the selection of research methods for a given question. Presenting an integrated approach to the interdisciplinary nature of the subject, it provides guidance for researchers and professionals on the tools available to answer questions on river restoration and management. Thoroughly updated since the first edition in 2003 by experts in their subfields, the book presents state-of-the-art tools that have revolutionized fluvial geomorphology in recent decades, such as physical and numerical modelling, remote sensing and GIS, new field techniques, advances in dating, tracking and sourcing, statistical approaches as well as more traditional methods such as the systems framework, stratigraphic analysis, form and flow characterisation and historical analysis. This book: Covers five main types of geomorphological questions and their associated tools: historical framework; spatial framework; chemical, physical and biological methods; analysis of processes and forms; and future understanding framework. Provides guidance on advantages and limitations of different tools for different applications, data sources, equipment and supplies needed, and case studies illustrating their application in an integrated perspective. It is an essential resource for researchers and professional geomorphologists, hydrologists, geologists, engineers, planners, and ecologists concerned with river management, conservation and restoration. It is a useful supplementary textbook for upper level undergraduate and graduate courses in Geography, Geology, Environmental Science, Civil and Environmental Engineering, and interdisciplinary courses in river management and restoration.