Author: Bradley Efron
Publisher: CRC Press
ISBN: 9780412042317
Category : Mathematics
Languages : en
Pages : 456
Book Description
Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.
An Introduction to the Bootstrap
Author: Bradley Efron
Publisher: CRC Press
ISBN: 9780412042317
Category : Mathematics
Languages : en
Pages : 456
Book Description
Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.
Publisher: CRC Press
ISBN: 9780412042317
Category : Mathematics
Languages : en
Pages : 456
Book Description
Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.
Machine Learning Quick Reference
Author: Rahul Kumar
Publisher: Packt Publishing Ltd
ISBN: 1788831616
Category : Computers
Languages : en
Pages : 283
Book Description
Your hands-on reference guide to developing, training, and optimizing your machine learning models Key FeaturesYour guide to learning efficient machine learning processes from scratchExplore expert techniques and hacks for a variety of machine learning conceptsWrite effective code in R, Python, Scala, and Spark to solve all your machine learning problemsBook Description Machine learning makes it possible to learn about the unknowns and gain hidden insights into your datasets by mastering many tools and techniques. This book guides you to do just that in a very compact manner. After giving a quick overview of what machine learning is all about, Machine Learning Quick Reference jumps right into its core algorithms and demonstrates how they can be applied to real-world scenarios. From model evaluation to optimizing their performance, this book will introduce you to the best practices in machine learning. Furthermore, you will also look at the more advanced aspects such as training neural networks and work with different kinds of data, such as text, time-series, and sequential data. Advanced methods and techniques such as causal inference, deep Gaussian processes, and more are also covered. By the end of this book, you will be able to train fast, accurate machine learning models at your fingertips, which you can easily use as a point of reference. What you will learnGet a quick rundown of model selection, statistical modeling, and cross-validationChoose the best machine learning algorithm to solve your problemExplore kernel learning, neural networks, and time-series analysisTrain deep learning models and optimize them for maximum performanceBriefly cover Bayesian techniques and sentiment analysis in your NLP solutionImplement probabilistic graphical models and causal inferencesMeasure and optimize the performance of your machine learning modelsWho this book is for If you’re a machine learning practitioner, data scientist, machine learning developer, or engineer, this book will serve as a reference point in building machine learning solutions. You will also find this book useful if you’re an intermediate machine learning developer or data scientist looking for a quick, handy reference to all the concepts of machine learning. You’ll need some exposure to machine learning to get the best out of this book.
Publisher: Packt Publishing Ltd
ISBN: 1788831616
Category : Computers
Languages : en
Pages : 283
Book Description
Your hands-on reference guide to developing, training, and optimizing your machine learning models Key FeaturesYour guide to learning efficient machine learning processes from scratchExplore expert techniques and hacks for a variety of machine learning conceptsWrite effective code in R, Python, Scala, and Spark to solve all your machine learning problemsBook Description Machine learning makes it possible to learn about the unknowns and gain hidden insights into your datasets by mastering many tools and techniques. This book guides you to do just that in a very compact manner. After giving a quick overview of what machine learning is all about, Machine Learning Quick Reference jumps right into its core algorithms and demonstrates how they can be applied to real-world scenarios. From model evaluation to optimizing their performance, this book will introduce you to the best practices in machine learning. Furthermore, you will also look at the more advanced aspects such as training neural networks and work with different kinds of data, such as text, time-series, and sequential data. Advanced methods and techniques such as causal inference, deep Gaussian processes, and more are also covered. By the end of this book, you will be able to train fast, accurate machine learning models at your fingertips, which you can easily use as a point of reference. What you will learnGet a quick rundown of model selection, statistical modeling, and cross-validationChoose the best machine learning algorithm to solve your problemExplore kernel learning, neural networks, and time-series analysisTrain deep learning models and optimize them for maximum performanceBriefly cover Bayesian techniques and sentiment analysis in your NLP solutionImplement probabilistic graphical models and causal inferencesMeasure and optimize the performance of your machine learning modelsWho this book is for If you’re a machine learning practitioner, data scientist, machine learning developer, or engineer, this book will serve as a reference point in building machine learning solutions. You will also find this book useful if you’re an intermediate machine learning developer or data scientist looking for a quick, handy reference to all the concepts of machine learning. You’ll need some exposure to machine learning to get the best out of this book.
Bootstrapping Machine Learning
Author: Louis Dorard
Publisher: CreateSpace
ISBN: 9781500789244
Category : Technology & Engineering
Languages : en
Pages : 206
Book Description
In an age of overflowing data, Machine Learning and Data Science seem to be all the rage. By analyzing data, computers are able to "learn" and generalize from examples of things happening in the real world. They can make predictions and answer questions such as “How much should I price this product?” and “Which type of document is this?”.Prediction APIs are making Machine Learning accessible to everyone and this book is the first that teaches how to use them. You will learn the possibilities offered by these APIs, how to formulate your own Machine Learning problem, and what are the key concepts to grasp — not how algorithms work, so it doesn't take a university degree to understand.Learn more at http://www.louisdorard.com/machine-learning-book
Publisher: CreateSpace
ISBN: 9781500789244
Category : Technology & Engineering
Languages : en
Pages : 206
Book Description
In an age of overflowing data, Machine Learning and Data Science seem to be all the rage. By analyzing data, computers are able to "learn" and generalize from examples of things happening in the real world. They can make predictions and answer questions such as “How much should I price this product?” and “Which type of document is this?”.Prediction APIs are making Machine Learning accessible to everyone and this book is the first that teaches how to use them. You will learn the possibilities offered by these APIs, how to formulate your own Machine Learning problem, and what are the key concepts to grasp — not how algorithms work, so it doesn't take a university degree to understand.Learn more at http://www.louisdorard.com/machine-learning-book
Bootstrap Methods and Their Application
Author: A. C. Davison
Publisher: Cambridge University Press
ISBN: 9780521574716
Category : Computers
Languages : en
Pages : 606
Book Description
Disk contains the library functions and documentation for use with Splus for Windows.
Publisher: Cambridge University Press
ISBN: 9780521574716
Category : Computers
Languages : en
Pages : 606
Book Description
Disk contains the library functions and documentation for use with Splus for Windows.
Python: Deeper Insights into Machine Learning
Author: Sebastian Raschka
Publisher: Packt Publishing Ltd
ISBN: 1787128547
Category : Computers
Languages : en
Pages : 901
Book Description
Leverage benefits of machine learning techniques using Python About This Book Improve and optimise machine learning systems using effective strategies. Develop a strategy to deal with a large amount of data. Use of Python code for implementing a range of machine learning algorithms and techniques. Who This Book Is For This title is for data scientist and researchers who are already into the field of data science and want to see machine learning in action and explore its real-world application. Prior knowledge of Python programming and mathematics is must with basic knowledge of machine learning concepts. What You Will Learn Learn to write clean and elegant Python code that will optimize the strength of your algorithms Uncover hidden patterns and structures in data with clustering Improve accuracy and consistency of results using powerful feature engineering techniques Gain practical and theoretical understanding of cutting-edge deep learning algorithms Solve unique tasks by building models Get grips on the machine learning design process In Detail Machine learning and predictive analytics are becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. It is one of the fastest growing trends in modern computing, and everyone wants to get into the field of machine learning. In order to obtain sufficient recognition in this field, one must be able to understand and design a machine learning system that serves the needs of a project. The idea is to prepare a learning path that will help you to tackle the real-world complexities of modern machine learning with innovative and cutting-edge techniques. Also, it will give you a solid foundation in the machine learning design process, and enable you to build customized machine learning models to solve unique problems. The course begins with getting your Python fundamentals nailed down. It focuses on answering the right questions that cove a wide range of powerful Python libraries, including scikit-learn Theano and Keras.After getting familiar with Python core concepts, it's time to dive into the field of data science. You will further gain a solid foundation on the machine learning design and also learn to customize models for solving problems. At a later stage, you will get a grip on more advanced techniques and acquire a broad set of powerful skills in the area of feature selection and feature engineering. Style and approach This course includes all the resources that will help you jump into the data science field with Python. The aim is to walk through the elements of Python covering powerful machine learning libraries. This course will explain important machine learning models in a step-by-step manner. Each topic is well explained with real-world applications with detailed guidance.Through this comprehensive guide, you will be able to explore machine learning techniques.
Publisher: Packt Publishing Ltd
ISBN: 1787128547
Category : Computers
Languages : en
Pages : 901
Book Description
Leverage benefits of machine learning techniques using Python About This Book Improve and optimise machine learning systems using effective strategies. Develop a strategy to deal with a large amount of data. Use of Python code for implementing a range of machine learning algorithms and techniques. Who This Book Is For This title is for data scientist and researchers who are already into the field of data science and want to see machine learning in action and explore its real-world application. Prior knowledge of Python programming and mathematics is must with basic knowledge of machine learning concepts. What You Will Learn Learn to write clean and elegant Python code that will optimize the strength of your algorithms Uncover hidden patterns and structures in data with clustering Improve accuracy and consistency of results using powerful feature engineering techniques Gain practical and theoretical understanding of cutting-edge deep learning algorithms Solve unique tasks by building models Get grips on the machine learning design process In Detail Machine learning and predictive analytics are becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. It is one of the fastest growing trends in modern computing, and everyone wants to get into the field of machine learning. In order to obtain sufficient recognition in this field, one must be able to understand and design a machine learning system that serves the needs of a project. The idea is to prepare a learning path that will help you to tackle the real-world complexities of modern machine learning with innovative and cutting-edge techniques. Also, it will give you a solid foundation in the machine learning design process, and enable you to build customized machine learning models to solve unique problems. The course begins with getting your Python fundamentals nailed down. It focuses on answering the right questions that cove a wide range of powerful Python libraries, including scikit-learn Theano and Keras.After getting familiar with Python core concepts, it's time to dive into the field of data science. You will further gain a solid foundation on the machine learning design and also learn to customize models for solving problems. At a later stage, you will get a grip on more advanced techniques and acquire a broad set of powerful skills in the area of feature selection and feature engineering. Style and approach This course includes all the resources that will help you jump into the data science field with Python. The aim is to walk through the elements of Python covering powerful machine learning libraries. This course will explain important machine learning models in a step-by-step manner. Each topic is well explained with real-world applications with detailed guidance.Through this comprehensive guide, you will be able to explore machine learning techniques.
Advances in Financial Machine Learning
Author: Marcos Lopez de Prado
Publisher: John Wiley & Sons
ISBN: 1119482119
Category : Business & Economics
Languages : en
Pages : 395
Book Description
Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
Publisher: John Wiley & Sons
ISBN: 1119482119
Category : Business & Economics
Languages : en
Pages : 395
Book Description
Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
Hands-On Machine Learning with R
Author: Brad Boehmke
Publisher: CRC Press
ISBN: 1000730433
Category : Business & Economics
Languages : en
Pages : 373
Book Description
Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.
Publisher: CRC Press
ISBN: 1000730433
Category : Business & Economics
Languages : en
Pages : 373
Book Description
Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.
Bootstrap Methods
Author: Gerhard Dikta
Publisher: Springer Nature
ISBN: 3030734803
Category : Mathematics
Languages : en
Pages : 256
Book Description
This book provides a compact introduction to the bootstrap method. In addition to classical results on point estimation and test theory, multivariate linear regression models and generalized linear models are covered in detail. Special attention is given to the use of bootstrap procedures to perform goodness-of-fit tests to validate model or distributional assumptions. In some cases, new methods are presented here for the first time. The text is motivated by practical examples and the implementations of the corresponding algorithms are always given directly in R in a comprehensible form. Overall, R is given great importance throughout. Each chapter includes a section of exercises and, for the more mathematically inclined readers, concludes with rigorous proofs. The intended audience is graduate students who already have a prior knowledge of probability theory and mathematical statistics.
Publisher: Springer Nature
ISBN: 3030734803
Category : Mathematics
Languages : en
Pages : 256
Book Description
This book provides a compact introduction to the bootstrap method. In addition to classical results on point estimation and test theory, multivariate linear regression models and generalized linear models are covered in detail. Special attention is given to the use of bootstrap procedures to perform goodness-of-fit tests to validate model or distributional assumptions. In some cases, new methods are presented here for the first time. The text is motivated by practical examples and the implementations of the corresponding algorithms are always given directly in R in a comprehensible form. Overall, R is given great importance throughout. Each chapter includes a section of exercises and, for the more mathematically inclined readers, concludes with rigorous proofs. The intended audience is graduate students who already have a prior knowledge of probability theory and mathematical statistics.
Statistical and Machine-Learning Data Mining:
Author: Bruce Ratner
Publisher: CRC Press
ISBN: 149879761X
Category : Computers
Languages : en
Pages : 690
Book Description
Interest in predictive analytics of big data has grown exponentially in the four years since the publication of Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data, Second Edition. In the third edition of this bestseller, the author has completely revised, reorganized, and repositioned the original chapters and produced 13 new chapters of creative and useful machine-learning data mining techniques. In sum, the 43 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. What is new in the Third Edition: The current chapters have been completely rewritten. The core content has been extended with strategies and methods for problems drawn from the top predictive analytics conference and statistical modeling workshops. Adds thirteen new chapters including coverage of data science and its rise, market share estimation, share of wallet modeling without survey data, latent market segmentation, statistical regression modeling that deals with incomplete data, decile analysis assessment in terms of the predictive power of the data, and a user-friendly version of text mining, not requiring an advanced background in natural language processing (NLP). Includes SAS subroutines which can be easily converted to other languages. As in the previous edition, this book offers detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. The author addresses each methodology and assigns its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.
Publisher: CRC Press
ISBN: 149879761X
Category : Computers
Languages : en
Pages : 690
Book Description
Interest in predictive analytics of big data has grown exponentially in the four years since the publication of Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data, Second Edition. In the third edition of this bestseller, the author has completely revised, reorganized, and repositioned the original chapters and produced 13 new chapters of creative and useful machine-learning data mining techniques. In sum, the 43 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. What is new in the Third Edition: The current chapters have been completely rewritten. The core content has been extended with strategies and methods for problems drawn from the top predictive analytics conference and statistical modeling workshops. Adds thirteen new chapters including coverage of data science and its rise, market share estimation, share of wallet modeling without survey data, latent market segmentation, statistical regression modeling that deals with incomplete data, decile analysis assessment in terms of the predictive power of the data, and a user-friendly version of text mining, not requiring an advanced background in natural language processing (NLP). Includes SAS subroutines which can be easily converted to other languages. As in the previous edition, this book offers detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. The author addresses each methodology and assigns its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.
Reinforcement Learning, second edition
Author: Richard S. Sutton
Publisher: MIT Press
ISBN: 0262352702
Category : Computers
Languages : en
Pages : 549
Book Description
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Publisher: MIT Press
ISBN: 0262352702
Category : Computers
Languages : en
Pages : 549
Book Description
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.