Author: Martin H. Trauth
Publisher: Springer Science & Business Media
ISBN: 3540727485
Category : Computers
Languages : en
Pages : 294
Book Description
Introduces methods of data analysis in geosciences using MATLAB such as basic statistics for univariate, bivariate and multivariate datasets, jackknife and bootstrap resampling schemes, processing of digital elevation models, gridding and contouring, geostatistics and kriging, processing and georeferencing of satellite images, digitizing from the screen, linear and nonlinear time-series analysis and the application of linear time-invariant and adaptive filters. Includes a brief description of each method and numerous examples demonstrating how MATLAB can be used on data sets from earth sciences.
MATLAB® Recipes for Earth Sciences
Author: Martin H. Trauth
Publisher: Springer Science & Business Media
ISBN: 3540727485
Category : Computers
Languages : en
Pages : 294
Book Description
Introduces methods of data analysis in geosciences using MATLAB such as basic statistics for univariate, bivariate and multivariate datasets, jackknife and bootstrap resampling schemes, processing of digital elevation models, gridding and contouring, geostatistics and kriging, processing and georeferencing of satellite images, digitizing from the screen, linear and nonlinear time-series analysis and the application of linear time-invariant and adaptive filters. Includes a brief description of each method and numerous examples demonstrating how MATLAB can be used on data sets from earth sciences.
Publisher: Springer Science & Business Media
ISBN: 3540727485
Category : Computers
Languages : en
Pages : 294
Book Description
Introduces methods of data analysis in geosciences using MATLAB such as basic statistics for univariate, bivariate and multivariate datasets, jackknife and bootstrap resampling schemes, processing of digital elevation models, gridding and contouring, geostatistics and kriging, processing and georeferencing of satellite images, digitizing from the screen, linear and nonlinear time-series analysis and the application of linear time-invariant and adaptive filters. Includes a brief description of each method and numerous examples demonstrating how MATLAB can be used on data sets from earth sciences.
SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics
Author: Daniel J. Denis
Publisher: John Wiley & Sons
ISBN: 1119465818
Category : Mathematics
Languages : en
Pages : 222
Book Description
Enables readers to start doing actual data analysis fast for a truly hands-on learning experience This concise and very easy-to-use primer introduces readers to a host of computational tools useful for making sense out of data, whether that data come from the social, behavioral, or natural sciences. The book places great emphasis on both data analysis and drawing conclusions from empirical observations. It also provides formulas where needed in many places, while always remaining focused on concepts rather than mathematical abstraction. SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics offers a variety of popular statistical analyses and data management tasks using SPSS that readers can immediately apply as needed for their own research, and emphasizes many helpful computational tools used in the discovery of empirical patterns. The book begins with a review of essential statistical principles before introducing readers to SPSS. The book then goes on to offer chapters on: Exploratory Data Analysis, Basic Statistics, and Visual Displays; Data Management in SPSS; Inferential Tests on Correlations, Counts, and Means; Power Analysis and Estimating Sample Size; Analysis of Variance – Fixed and Random Effects; Repeated Measures ANOVA; Simple and Multiple Linear Regression; Logistic Regression; Multivariate Analysis of Variance (MANOVA) and Discriminant Analysis; Principal Components Analysis; Exploratory Factor Analysis; and Non-Parametric Tests. This helpful resource allows readers to: Understand data analysis in practice rather than delving too deeply into abstract mathematical concepts Make use of computational tools used by data analysis professionals. Focus on real-world application to apply concepts from the book to actual research Assuming only minimal, prior knowledge of statistics, SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics is an excellent “how-to” book for undergraduate and graduate students alike. This book is also a welcome resource for researchers and professionals who require a quick, go-to source for performing essential statistical analyses and data management tasks.
Publisher: John Wiley & Sons
ISBN: 1119465818
Category : Mathematics
Languages : en
Pages : 222
Book Description
Enables readers to start doing actual data analysis fast for a truly hands-on learning experience This concise and very easy-to-use primer introduces readers to a host of computational tools useful for making sense out of data, whether that data come from the social, behavioral, or natural sciences. The book places great emphasis on both data analysis and drawing conclusions from empirical observations. It also provides formulas where needed in many places, while always remaining focused on concepts rather than mathematical abstraction. SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics offers a variety of popular statistical analyses and data management tasks using SPSS that readers can immediately apply as needed for their own research, and emphasizes many helpful computational tools used in the discovery of empirical patterns. The book begins with a review of essential statistical principles before introducing readers to SPSS. The book then goes on to offer chapters on: Exploratory Data Analysis, Basic Statistics, and Visual Displays; Data Management in SPSS; Inferential Tests on Correlations, Counts, and Means; Power Analysis and Estimating Sample Size; Analysis of Variance – Fixed and Random Effects; Repeated Measures ANOVA; Simple and Multiple Linear Regression; Logistic Regression; Multivariate Analysis of Variance (MANOVA) and Discriminant Analysis; Principal Components Analysis; Exploratory Factor Analysis; and Non-Parametric Tests. This helpful resource allows readers to: Understand data analysis in practice rather than delving too deeply into abstract mathematical concepts Make use of computational tools used by data analysis professionals. Focus on real-world application to apply concepts from the book to actual research Assuming only minimal, prior knowledge of statistics, SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics is an excellent “how-to” book for undergraduate and graduate students alike. This book is also a welcome resource for researchers and professionals who require a quick, go-to source for performing essential statistical analyses and data management tasks.
Graduate Research Methods in Social Work
Author: Matthew P. DeCarlo
Publisher:
ISBN: 9781949373202
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781949373202
Category :
Languages : en
Pages :
Book Description
Univariate, Bivariate, and Multivariate Statistics Using R
Author: Daniel J. Denis
Publisher: John Wiley & Sons
ISBN: 1119549930
Category : Mathematics
Languages : en
Pages : 384
Book Description
A practical source for performing essential statistical analyses and data management tasks in R Univariate, Bivariate, and Multivariate Statistics Using R offers a practical and very user-friendly introduction to the use of R software that covers a range of statistical methods featured in data analysis and data science. The author— a noted expert in quantitative teaching —has written a quick go-to reference for performing essential statistical analyses and data management tasks in R. Requiring only minimal prior knowledge, the book introduces concepts needed for an immediate yet clear understanding of statistical concepts essential to interpreting software output. The author explores univariate, bivariate, and multivariate statistical methods, as well as select nonparametric tests. Altogether a hands-on manual on the applied statistics and essential R computing capabilities needed to write theses, dissertations, as well as research publications. The book is comprehensive in its coverage of univariate through to multivariate procedures, while serving as a friendly and gentle introduction to R software for the newcomer. This important resource: Offers an introductory, concise guide to the computational tools that are useful for making sense out of data using R statistical software Provides a resource for students and professionals in the social, behavioral, and natural sciences Puts the emphasis on the computational tools used in the discovery of empirical patterns Features a variety of popular statistical analyses and data management tasks that can be immediately and quickly applied as needed to research projects Shows how to apply statistical analysis using R to data sets in order to get started quickly performing essential tasks in data analysis and data science Written for students, professionals, and researchers primarily in the social, behavioral, and natural sciences, Univariate, Bivariate, and Multivariate Statistics Using R offers an easy-to-use guide for performing data analysis fast, with an emphasis on drawing conclusions from empirical observations. The book can also serve as a primary or secondary textbook for courses in data analysis or data science, or others in which quantitative methods are featured.
Publisher: John Wiley & Sons
ISBN: 1119549930
Category : Mathematics
Languages : en
Pages : 384
Book Description
A practical source for performing essential statistical analyses and data management tasks in R Univariate, Bivariate, and Multivariate Statistics Using R offers a practical and very user-friendly introduction to the use of R software that covers a range of statistical methods featured in data analysis and data science. The author— a noted expert in quantitative teaching —has written a quick go-to reference for performing essential statistical analyses and data management tasks in R. Requiring only minimal prior knowledge, the book introduces concepts needed for an immediate yet clear understanding of statistical concepts essential to interpreting software output. The author explores univariate, bivariate, and multivariate statistical methods, as well as select nonparametric tests. Altogether a hands-on manual on the applied statistics and essential R computing capabilities needed to write theses, dissertations, as well as research publications. The book is comprehensive in its coverage of univariate through to multivariate procedures, while serving as a friendly and gentle introduction to R software for the newcomer. This important resource: Offers an introductory, concise guide to the computational tools that are useful for making sense out of data using R statistical software Provides a resource for students and professionals in the social, behavioral, and natural sciences Puts the emphasis on the computational tools used in the discovery of empirical patterns Features a variety of popular statistical analyses and data management tasks that can be immediately and quickly applied as needed to research projects Shows how to apply statistical analysis using R to data sets in order to get started quickly performing essential tasks in data analysis and data science Written for students, professionals, and researchers primarily in the social, behavioral, and natural sciences, Univariate, Bivariate, and Multivariate Statistics Using R offers an easy-to-use guide for performing data analysis fast, with an emphasis on drawing conclusions from empirical observations. The book can also serve as a primary or secondary textbook for courses in data analysis or data science, or others in which quantitative methods are featured.
Bivariate Data Analysis
Author: Randi L. Sims
Publisher: Nova Publishers
ISBN: 9781560727514
Category : Mathematics
Languages : en
Pages : 116
Book Description
Helps users of computerized statistical packages make correct statistical choices to match data they have collected, in cases of bivariate data analysis. Overviews popular statistical packages, then gives instructions on classifying data, frequency distributions, descriptive statistics, and hypothesis testing. Also covers Chi-square, t tests of two means, ANOVA, correlation, and testing scales. Includes exercises, answers, and a glossary.
Publisher: Nova Publishers
ISBN: 9781560727514
Category : Mathematics
Languages : en
Pages : 116
Book Description
Helps users of computerized statistical packages make correct statistical choices to match data they have collected, in cases of bivariate data analysis. Overviews popular statistical packages, then gives instructions on classifying data, frequency distributions, descriptive statistics, and hypothesis testing. Also covers Chi-square, t tests of two means, ANOVA, correlation, and testing scales. Includes exercises, answers, and a glossary.
Applied Univariate, Bivariate, and Multivariate Statistics Using Python
Author: Daniel J. Denis
Publisher: John Wiley & Sons
ISBN: 1119578183
Category : Mathematics
Languages : en
Pages : 304
Book Description
Applied Univariate, Bivariate, and Multivariate Statistics Using Python A practical, “how-to” reference for anyone performing essential statistical analyses and data management tasks in Python Applied Univariate, Bivariate, and Multivariate Statistics Using Python delivers a comprehensive introduction to a wide range of statistical methods performed using Python in a single, one-stop reference. The book contains user-friendly guidance and instructions on using Python to run a variety of statistical procedures without getting bogged down in unnecessary theory. Throughout, the author emphasizes a set of computational tools used in the discovery of empirical patterns, as well as several popular statistical analyses and data management tasks that can be immediately applied. Most of the datasets used in the book are small enough to be easily entered into Python manually, though they can also be downloaded for free from www.datapsyc.com. Only minimal knowledge of statistics is assumed, making the book perfect for those seeking an easily accessible toolkit for statistical analysis with Python. Applied Univariate, Bivariate, and Multivariate Statistics Using Python represents the fastest way to learn how to analyze data with Python. Readers will also benefit from the inclusion of: A review of essential statistical principles, including types of data, measurement, significance tests, significance levels, and type I and type II errors An introduction to Python, exploring how to communicate with Python A treatment of exploratory data analysis, basic statistics and visual displays, including frequencies and descriptives, q-q plots, box-and-whisker plots, and data management An introduction to topics such as ANOVA, MANOVA and discriminant analysis, regression, principal components analysis, factor analysis, cluster analysis, among others, exploring the nature of what these techniques can vs. cannot do on a methodological level Perfect for undergraduate and graduate students in the social, behavioral, and natural sciences, Applied Univariate, Bivariate, and Multivariate Statistics Using Python will also earn a place in the libraries of researchers and data analysts seeking a quick go-to resource for univariate, bivariate, and multivariate analysis in Python.
Publisher: John Wiley & Sons
ISBN: 1119578183
Category : Mathematics
Languages : en
Pages : 304
Book Description
Applied Univariate, Bivariate, and Multivariate Statistics Using Python A practical, “how-to” reference for anyone performing essential statistical analyses and data management tasks in Python Applied Univariate, Bivariate, and Multivariate Statistics Using Python delivers a comprehensive introduction to a wide range of statistical methods performed using Python in a single, one-stop reference. The book contains user-friendly guidance and instructions on using Python to run a variety of statistical procedures without getting bogged down in unnecessary theory. Throughout, the author emphasizes a set of computational tools used in the discovery of empirical patterns, as well as several popular statistical analyses and data management tasks that can be immediately applied. Most of the datasets used in the book are small enough to be easily entered into Python manually, though they can also be downloaded for free from www.datapsyc.com. Only minimal knowledge of statistics is assumed, making the book perfect for those seeking an easily accessible toolkit for statistical analysis with Python. Applied Univariate, Bivariate, and Multivariate Statistics Using Python represents the fastest way to learn how to analyze data with Python. Readers will also benefit from the inclusion of: A review of essential statistical principles, including types of data, measurement, significance tests, significance levels, and type I and type II errors An introduction to Python, exploring how to communicate with Python A treatment of exploratory data analysis, basic statistics and visual displays, including frequencies and descriptives, q-q plots, box-and-whisker plots, and data management An introduction to topics such as ANOVA, MANOVA and discriminant analysis, regression, principal components analysis, factor analysis, cluster analysis, among others, exploring the nature of what these techniques can vs. cannot do on a methodological level Perfect for undergraduate and graduate students in the social, behavioral, and natural sciences, Applied Univariate, Bivariate, and Multivariate Statistics Using Python will also earn a place in the libraries of researchers and data analysts seeking a quick go-to resource for univariate, bivariate, and multivariate analysis in Python.
Statistical Graphics for Univariate and Bivariate Data
Author: William G. Jacoby
Publisher: SAGE
ISBN: 9780761900832
Category : Mathematics
Languages : en
Pages : 116
Book Description
Statistical Graphics for Univariate and Bivariate Data focuses on graphical displays that researchers can employ as an integral part of the data analysis process, and provides strategies for examining data more effectively.
Publisher: SAGE
ISBN: 9780761900832
Category : Mathematics
Languages : en
Pages : 116
Book Description
Statistical Graphics for Univariate and Bivariate Data focuses on graphical displays that researchers can employ as an integral part of the data analysis process, and provides strategies for examining data more effectively.
Introduction to Bivariate and Multivariate Analysis
Author: Richard Harold Lindeman
Publisher: Pearson Scott Foresman
ISBN:
Category : Mathematics
Languages : en
Pages : 462
Book Description
Bivariate regression analysis; Bivariate linear correlation; Further methods of bivariate correlation; Multiple regression and correlation; Canonical correlation; Disciminant analysis; Multivariate analysis of variance; Factor analysis; Multivariate analysis of categorical data.
Publisher: Pearson Scott Foresman
ISBN:
Category : Mathematics
Languages : en
Pages : 462
Book Description
Bivariate regression analysis; Bivariate linear correlation; Further methods of bivariate correlation; Multiple regression and correlation; Canonical correlation; Disciminant analysis; Multivariate analysis of variance; Factor analysis; Multivariate analysis of categorical data.
Applied Univariate, Bivariate, and Multivariate Statistics
Author: Daniel J. Denis
Publisher: John Wiley & Sons
ISBN: 1118632311
Category : Mathematics
Languages : en
Pages : 760
Book Description
A clear and efficient balance between theory and application of statistical modeling techniques in the social and behavioral sciences Written as a general and accessible introduction, Applied Univariate, Bivariate, and Multivariate Statistics provides an overview of statistical modeling techniques used in fields in the social and behavioral sciences. Blending statistical theory and methodology, the book surveys both the technical and theoretical aspects of good data analysis. Featuring applied resources at various levels, the book includes statistical techniques such as t-tests and correlation as well as more advanced procedures such as MANOVA, factor analysis, and structural equation modeling. To promote a more in-depth interpretation of statistical techniques across the sciences, the book surveys some of the technical arguments underlying formulas and equations. Applied Univariate, Bivariate, and Multivariate Statistics also features Demonstrations of statistical techniques using software packages such as R and SPSS® Examples of hypothetical and real data with subsequent statistical analyses Historical and philosophical insights into many of the techniques used in modern social science A companion website that includes further instructional details, additional data sets, solutions to selected exercises, and multiple programming options An ideal textbook for courses in statistics and methodology at the upper- undergraduate and graduate-levels in psychology, political science, biology, sociology, education, economics, communications, law, and survey research, Applied Univariate, Bivariate, and Multivariate Statistics is also a useful reference for practitioners and researchers in their field of application. DANIEL J. DENIS, PhD, is Associate Professor of Quantitative Psychology at the University of Montana where he teaches courses in univariate and multivariate statistics. He has published a number of articles in peer-reviewed journals and has served as consultant to researchers and practitioners in a variety of fields.
Publisher: John Wiley & Sons
ISBN: 1118632311
Category : Mathematics
Languages : en
Pages : 760
Book Description
A clear and efficient balance between theory and application of statistical modeling techniques in the social and behavioral sciences Written as a general and accessible introduction, Applied Univariate, Bivariate, and Multivariate Statistics provides an overview of statistical modeling techniques used in fields in the social and behavioral sciences. Blending statistical theory and methodology, the book surveys both the technical and theoretical aspects of good data analysis. Featuring applied resources at various levels, the book includes statistical techniques such as t-tests and correlation as well as more advanced procedures such as MANOVA, factor analysis, and structural equation modeling. To promote a more in-depth interpretation of statistical techniques across the sciences, the book surveys some of the technical arguments underlying formulas and equations. Applied Univariate, Bivariate, and Multivariate Statistics also features Demonstrations of statistical techniques using software packages such as R and SPSS® Examples of hypothetical and real data with subsequent statistical analyses Historical and philosophical insights into many of the techniques used in modern social science A companion website that includes further instructional details, additional data sets, solutions to selected exercises, and multiple programming options An ideal textbook for courses in statistics and methodology at the upper- undergraduate and graduate-levels in psychology, political science, biology, sociology, education, economics, communications, law, and survey research, Applied Univariate, Bivariate, and Multivariate Statistics is also a useful reference for practitioners and researchers in their field of application. DANIEL J. DENIS, PhD, is Associate Professor of Quantitative Psychology at the University of Montana where he teaches courses in univariate and multivariate statistics. He has published a number of articles in peer-reviewed journals and has served as consultant to researchers and practitioners in a variety of fields.
Tableau: Creating Interactive Data Visualizations
Author: Jen Stirrup
Publisher: Packt Publishing Ltd
ISBN: 1787120503
Category : Computers
Languages : en
Pages : 645
Book Description
Illustrate your data in a more interactive way by implementing data visualization principles and creating visual stories using Tableau About This Book Use data visualization principles to help you to design dashboards that enlighten and support business decisions Integrate your data to provide mashed-up dashboards Connect to various data sources and understand what data is appropriate for Tableau Public Understand chart types and when to use specific chart types with different types of data Who This Book Is For Data scientists who have just started using Tableau and want to build on the skills using practical examples. Familiarity with previous versions of Tableau will be helpful, but not necessary. What You Will Learn Customize your designs to meet the needs of your business using Tableau Use Tableau to prototype, develop, and deploy the final dashboard Create filled maps and use any shape file Discover features of Tableau Public, from basic to advanced Build geographic maps to bring context to data Create filters and actions to allow greater interactivity to Tableau Public visualizations and dashboards Publish and embed Tableau visualizations and dashboards in articles In Detail With increasing interest for data visualization in the media, businesses are looking to create effective dashboards that engage as well as communicate the truth of data. Tableau makes data accessible to everyone, and is a great way of sharing enterprise dashboards across the business. Tableau is a revolutionary toolkit that lets you simply and effectively create high-quality data visualizations. This course starts with making you familiar with its features and enable you to develop and enhance your dashboard skills, starting with an overview of what dashboard is, followed by how you can collect data using various mathematical formulas. Next, you'll learn to filter and group data, as well as how to use various functions to present the data in an appealing and accurate way. In the first module, you will learn how to use the key advanced string functions to play with data and images. You will be walked through the various features of Tableau including dual axes, scatterplot matrices, heat maps, and sizing.In the second module, you'll start with getting your data into Tableau, move onto generating progressively complex graphics, and end with the finishing touches and packaging your work for distribution. This module is filled with practical examples to help you create filled maps, use custom markers, add slider selectors, and create dashboards. You will learn how to manipulate data in various ways by applying various filters, logic, and calculating various aggregate measures. Finally, in the third module, you learn about Tableau Public using which allows readers to explore data associations in multiple-sourced public data, and uses state-of-the-art dashboard and chart graphics to immerse the users in an interactive experience. In this module, the readers can quickly gain confidence in understanding and expanding their visualization, creation knowledge, and quickly create interesting, interactive data visualizations to bring a richness and vibrancy to complex articles. The course provides a great overview for beginner to intermediate Tableau users, and covers the creation of data visualizations of varying complexities. Style and approach The approach will be a combined perspective, wherein we start by performing some basic recipes and move on to some advanced ones. Finally, we perform some advanced analytics and create appealing and insightful data stories using Tableau Public in a step-by-step manner.
Publisher: Packt Publishing Ltd
ISBN: 1787120503
Category : Computers
Languages : en
Pages : 645
Book Description
Illustrate your data in a more interactive way by implementing data visualization principles and creating visual stories using Tableau About This Book Use data visualization principles to help you to design dashboards that enlighten and support business decisions Integrate your data to provide mashed-up dashboards Connect to various data sources and understand what data is appropriate for Tableau Public Understand chart types and when to use specific chart types with different types of data Who This Book Is For Data scientists who have just started using Tableau and want to build on the skills using practical examples. Familiarity with previous versions of Tableau will be helpful, but not necessary. What You Will Learn Customize your designs to meet the needs of your business using Tableau Use Tableau to prototype, develop, and deploy the final dashboard Create filled maps and use any shape file Discover features of Tableau Public, from basic to advanced Build geographic maps to bring context to data Create filters and actions to allow greater interactivity to Tableau Public visualizations and dashboards Publish and embed Tableau visualizations and dashboards in articles In Detail With increasing interest for data visualization in the media, businesses are looking to create effective dashboards that engage as well as communicate the truth of data. Tableau makes data accessible to everyone, and is a great way of sharing enterprise dashboards across the business. Tableau is a revolutionary toolkit that lets you simply and effectively create high-quality data visualizations. This course starts with making you familiar with its features and enable you to develop and enhance your dashboard skills, starting with an overview of what dashboard is, followed by how you can collect data using various mathematical formulas. Next, you'll learn to filter and group data, as well as how to use various functions to present the data in an appealing and accurate way. In the first module, you will learn how to use the key advanced string functions to play with data and images. You will be walked through the various features of Tableau including dual axes, scatterplot matrices, heat maps, and sizing.In the second module, you'll start with getting your data into Tableau, move onto generating progressively complex graphics, and end with the finishing touches and packaging your work for distribution. This module is filled with practical examples to help you create filled maps, use custom markers, add slider selectors, and create dashboards. You will learn how to manipulate data in various ways by applying various filters, logic, and calculating various aggregate measures. Finally, in the third module, you learn about Tableau Public using which allows readers to explore data associations in multiple-sourced public data, and uses state-of-the-art dashboard and chart graphics to immerse the users in an interactive experience. In this module, the readers can quickly gain confidence in understanding and expanding their visualization, creation knowledge, and quickly create interesting, interactive data visualizations to bring a richness and vibrancy to complex articles. The course provides a great overview for beginner to intermediate Tableau users, and covers the creation of data visualizations of varying complexities. Style and approach The approach will be a combined perspective, wherein we start by performing some basic recipes and move on to some advanced ones. Finally, we perform some advanced analytics and create appealing and insightful data stories using Tableau Public in a step-by-step manner.