Author: Galina V. Kurlyandskaya
Publisher: MDPI
ISBN: 3039366807
Category : Technology & Engineering
Languages : en
Pages : 170
Book Description
The selective and quantitative detection of biocomponents is greatly requested in biomedical applications and clinical diagnostics. Many traditional magnetic materials are not suitable for the ever-increasing demands of these processes. The push for a new generation of microscale sensors for bioapplications continues to challenge the materials science community to develop novel nanostructures that are suitable for such purposes. The principal requirements of a new generation of nanomaterials for sensor applications are based on well-known demands: high sensitivity, small size, low power consumption, stability, quick response, resistance to aggressive media, low price, and easy operation by nonskilled personnel. There are different types of magnetic effects capable of creating sensors for biology, medicine, and drug delivery, including magnetoresistance, spin valves, Hall and inductive effects, and giant magnetoimpedance. The present goal is to design nanomaterials both for magnetic markers and sensitive elements as synergetic pairs working in one device with adjusted characteristics of both materials. Synthetic approaches using the advantages of simulation methods and synthetic materials mimicking natural tissue properties can be useful, as can the further development of modeling strategies for magnetic nanostructures.
Biosensors with Magnetic Nanocomponents
Author: Galina V. Kurlyandskaya
Publisher: MDPI
ISBN: 3039366807
Category : Technology & Engineering
Languages : en
Pages : 170
Book Description
The selective and quantitative detection of biocomponents is greatly requested in biomedical applications and clinical diagnostics. Many traditional magnetic materials are not suitable for the ever-increasing demands of these processes. The push for a new generation of microscale sensors for bioapplications continues to challenge the materials science community to develop novel nanostructures that are suitable for such purposes. The principal requirements of a new generation of nanomaterials for sensor applications are based on well-known demands: high sensitivity, small size, low power consumption, stability, quick response, resistance to aggressive media, low price, and easy operation by nonskilled personnel. There are different types of magnetic effects capable of creating sensors for biology, medicine, and drug delivery, including magnetoresistance, spin valves, Hall and inductive effects, and giant magnetoimpedance. The present goal is to design nanomaterials both for magnetic markers and sensitive elements as synergetic pairs working in one device with adjusted characteristics of both materials. Synthetic approaches using the advantages of simulation methods and synthetic materials mimicking natural tissue properties can be useful, as can the further development of modeling strategies for magnetic nanostructures.
Publisher: MDPI
ISBN: 3039366807
Category : Technology & Engineering
Languages : en
Pages : 170
Book Description
The selective and quantitative detection of biocomponents is greatly requested in biomedical applications and clinical diagnostics. Many traditional magnetic materials are not suitable for the ever-increasing demands of these processes. The push for a new generation of microscale sensors for bioapplications continues to challenge the materials science community to develop novel nanostructures that are suitable for such purposes. The principal requirements of a new generation of nanomaterials for sensor applications are based on well-known demands: high sensitivity, small size, low power consumption, stability, quick response, resistance to aggressive media, low price, and easy operation by nonskilled personnel. There are different types of magnetic effects capable of creating sensors for biology, medicine, and drug delivery, including magnetoresistance, spin valves, Hall and inductive effects, and giant magnetoimpedance. The present goal is to design nanomaterials both for magnetic markers and sensitive elements as synergetic pairs working in one device with adjusted characteristics of both materials. Synthetic approaches using the advantages of simulation methods and synthetic materials mimicking natural tissue properties can be useful, as can the further development of modeling strategies for magnetic nanostructures.
Nanomaterials for Biosensors
Author: Bansi D. Malhotra
Publisher: William Andrew
ISBN: 0128135158
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
Nanomaterials for Biosensors: Fundamentals and Applications provides a detailed summary of the main nanomaterials used in biosensing and their application. It covers recent developments in nanomaterials for the fabrication of biosensor devices for healthcare diagnostics, food freshness and bioprocessing. The various processes used for synthesis and characterization of nanostructured materials are examined, along with the design and fabrication of bioelectronic devices using nanostructured materials as building blocks. Users will find the fundamentals of the main nanomaterials used in biosensing, helping them visualize a systematic and coherent picture of how nanomaterials are used in biosensors. The book also addresses the role of bio-conjugation of nanomaterials in the construction of nano-biointerfaces for application in biosensors. Such applications, including metal nanoparticles, metal oxide nanoparticles, nanocomposites, carbon nanotubes, conducting polymers and plasmonic nanostructures in biosensing are discussed relative to each nanomaterial concerned. Finally, recent advancements in protein functionalized nanomaterials for cancer diagnostics and bio-imaging are also included. - Provides a detailed study on how nanomaterials are used to enhance sensing capabilities in biosensors - Explains the properties, characterization methods and preparation techniques of the nanomaterials used in biosensing - Arranged in a material-by-material way, making it clear how each nanomaterial should be used
Publisher: William Andrew
ISBN: 0128135158
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
Nanomaterials for Biosensors: Fundamentals and Applications provides a detailed summary of the main nanomaterials used in biosensing and their application. It covers recent developments in nanomaterials for the fabrication of biosensor devices for healthcare diagnostics, food freshness and bioprocessing. The various processes used for synthesis and characterization of nanostructured materials are examined, along with the design and fabrication of bioelectronic devices using nanostructured materials as building blocks. Users will find the fundamentals of the main nanomaterials used in biosensing, helping them visualize a systematic and coherent picture of how nanomaterials are used in biosensors. The book also addresses the role of bio-conjugation of nanomaterials in the construction of nano-biointerfaces for application in biosensors. Such applications, including metal nanoparticles, metal oxide nanoparticles, nanocomposites, carbon nanotubes, conducting polymers and plasmonic nanostructures in biosensing are discussed relative to each nanomaterial concerned. Finally, recent advancements in protein functionalized nanomaterials for cancer diagnostics and bio-imaging are also included. - Provides a detailed study on how nanomaterials are used to enhance sensing capabilities in biosensors - Explains the properties, characterization methods and preparation techniques of the nanomaterials used in biosensing - Arranged in a material-by-material way, making it clear how each nanomaterial should be used
Magnetic Nanoparticle-Based Hybrid Materials
Author: Andrea Ehrmann
Publisher: Woodhead Publishing
ISBN: 0128236892
Category : Technology & Engineering
Languages : en
Pages : 761
Book Description
Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications introduces the principles, properties, and emerging applications of this important materials system. The hybridization of magnetic nanoparticles with metals, metal oxides and semiconducting nanoparticles may result in superior properties. The book reviews the most relevant hybrid materials, their mechanisms and properties. Then, the book focuses on the rational design, controlled synthesis, advanced characterizations and in-depth understanding of structure-property relationships. The last part addresses the promising applications of hybrid nanomaterials in the real world such as in the environment, energy, medicine fields. Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications comprehensively reviews both the theoretical and experimental approaches used to rapidly advance nanomaterials that could result in new technologies that impact day-to-day life and society in key areas such as health and the environment. It is suitable for researchers and practitioners who are materials scientists and engineers, chemists or physicists in academia and R&D. - Provides in-depth information on the basic principles of magnetic nanoparticles-based hybrid materials such as synthesis, characterization, properties, and magnon interactions - Discusses the most relevant hybrid materials systems including integration of metals, metal oxides, polymers, carbon and more - Addresses the emerging applications in medicine, the environment, energy, sensing, and computing enabled by magnetic nanoparticles-based hybrid materials
Publisher: Woodhead Publishing
ISBN: 0128236892
Category : Technology & Engineering
Languages : en
Pages : 761
Book Description
Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications introduces the principles, properties, and emerging applications of this important materials system. The hybridization of magnetic nanoparticles with metals, metal oxides and semiconducting nanoparticles may result in superior properties. The book reviews the most relevant hybrid materials, their mechanisms and properties. Then, the book focuses on the rational design, controlled synthesis, advanced characterizations and in-depth understanding of structure-property relationships. The last part addresses the promising applications of hybrid nanomaterials in the real world such as in the environment, energy, medicine fields. Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications comprehensively reviews both the theoretical and experimental approaches used to rapidly advance nanomaterials that could result in new technologies that impact day-to-day life and society in key areas such as health and the environment. It is suitable for researchers and practitioners who are materials scientists and engineers, chemists or physicists in academia and R&D. - Provides in-depth information on the basic principles of magnetic nanoparticles-based hybrid materials such as synthesis, characterization, properties, and magnon interactions - Discusses the most relevant hybrid materials systems including integration of metals, metal oxides, polymers, carbon and more - Addresses the emerging applications in medicine, the environment, energy, sensing, and computing enabled by magnetic nanoparticles-based hybrid materials
Nanobiosensors
Author: Aiguo Wu
Publisher: John Wiley & Sons
ISBN: 3527345108
Category : Science
Languages : en
Pages : 412
Book Description
Containing cutting edge research on the hot topic of nanobiosensor, this book will become highly read Biosensor research has recently re-emerged as most vibrant area in recent years particularly after the advent of novel nanomaterials of multidimensional features and compositions. Nanomaterials of different types and striking properties have played a positive role in giving the boost and accelerated pace to biosensors development technology. Nanobiosensors - From Design to Applications covers several aspects of biosensors beginning from the basic concepts to advanced level research. It will help to bridge the gap between various aspects of biosensors development technology and applications. It covers biosensors related material in broad spectrum such as basic concepts, biosensors & their classification, biomarkers & their role in biosensors, nanostructures-based biosensors, applications of biosensors in human diseases, drug detection, toxins, and smart phone based biosensors. Nanobiosensors - From Design to Applications will prove a source of inspiration for research on biosensors, their local level development and consequently using for practical application in different industries such as food, biomedical diagnosis, pharmaceutics, agriculture, drug discovery, forensics, etc. * Discusses the latest technology and advances in the field of nanobiosensors and their applications in human diseases, drug detection, toxins * Offers a broad and comprehensive view of cutting-edge research on advanced materials such as carbon materials, nitride based nanomaterials, metal and metal oxide based nanomaterials for the fast-developing nanobiosensors research * Goes to a wide scientific and industry audience Nanobiosensors - From Design to Applications is a resource for polymer chemists, spectroscopists, materials scientists, physical chemists, surface chemists, and surface physicists.
Publisher: John Wiley & Sons
ISBN: 3527345108
Category : Science
Languages : en
Pages : 412
Book Description
Containing cutting edge research on the hot topic of nanobiosensor, this book will become highly read Biosensor research has recently re-emerged as most vibrant area in recent years particularly after the advent of novel nanomaterials of multidimensional features and compositions. Nanomaterials of different types and striking properties have played a positive role in giving the boost and accelerated pace to biosensors development technology. Nanobiosensors - From Design to Applications covers several aspects of biosensors beginning from the basic concepts to advanced level research. It will help to bridge the gap between various aspects of biosensors development technology and applications. It covers biosensors related material in broad spectrum such as basic concepts, biosensors & their classification, biomarkers & their role in biosensors, nanostructures-based biosensors, applications of biosensors in human diseases, drug detection, toxins, and smart phone based biosensors. Nanobiosensors - From Design to Applications will prove a source of inspiration for research on biosensors, their local level development and consequently using for practical application in different industries such as food, biomedical diagnosis, pharmaceutics, agriculture, drug discovery, forensics, etc. * Discusses the latest technology and advances in the field of nanobiosensors and their applications in human diseases, drug detection, toxins * Offers a broad and comprehensive view of cutting-edge research on advanced materials such as carbon materials, nitride based nanomaterials, metal and metal oxide based nanomaterials for the fast-developing nanobiosensors research * Goes to a wide scientific and industry audience Nanobiosensors - From Design to Applications is a resource for polymer chemists, spectroscopists, materials scientists, physical chemists, surface chemists, and surface physicists.
Magnetic Nanomaterials in Analytical Chemistry
Author: Mazaher Ahmadi
Publisher: Elsevier
ISBN: 0128221313
Category : Science
Languages : en
Pages : 368
Book Description
Magnetic Nanomaterials in Analytical Chemistry provides the first comprehensive review of magnetic nanomaterials in a variety of analytical chemistry applications, including basic information necessary for students and those new to the topic to utilize them. In addition to analytical chemists, those in various other disciplines where these materials have great potential-e.g., organic chemistry, catalysis, sensors-will also find this a valuable resource. Magnetic nanomaterials that can be controlled using external magnetic fields have opened new doors for the development of new sample preparation methods and novel magnetic sorbents for forensic chemistry, environmental monitoring, magnetic digital microfluidics, bioanalysis, and food analysis. In addition, they are seeing wide application as sensing materials in the development of giant magnetoresistive sensors, biosensors, electrochemical sensors, surface-enhanced Raman spectroscopy sensors, resonance light scattering sensors, and colorimetric sensors. Includes fundamental information on magnetic nanomaterials, including their classification, synthesis, functionalization, and characterization methods, separation and isolation techniques, toxicity, fate, and safe disposal Each chapter describes a specific application Utilizes figures, schemes, and images for better understanding of the principles of the method Presents information on advanced methods, such as giant magnetoresistive and magnetic digital microfluidics
Publisher: Elsevier
ISBN: 0128221313
Category : Science
Languages : en
Pages : 368
Book Description
Magnetic Nanomaterials in Analytical Chemistry provides the first comprehensive review of magnetic nanomaterials in a variety of analytical chemistry applications, including basic information necessary for students and those new to the topic to utilize them. In addition to analytical chemists, those in various other disciplines where these materials have great potential-e.g., organic chemistry, catalysis, sensors-will also find this a valuable resource. Magnetic nanomaterials that can be controlled using external magnetic fields have opened new doors for the development of new sample preparation methods and novel magnetic sorbents for forensic chemistry, environmental monitoring, magnetic digital microfluidics, bioanalysis, and food analysis. In addition, they are seeing wide application as sensing materials in the development of giant magnetoresistive sensors, biosensors, electrochemical sensors, surface-enhanced Raman spectroscopy sensors, resonance light scattering sensors, and colorimetric sensors. Includes fundamental information on magnetic nanomaterials, including their classification, synthesis, functionalization, and characterization methods, separation and isolation techniques, toxicity, fate, and safe disposal Each chapter describes a specific application Utilizes figures, schemes, and images for better understanding of the principles of the method Presents information on advanced methods, such as giant magnetoresistive and magnetic digital microfluidics
Magnetic Nanoparticles in Biosensing and Medicine
Author: Nicholas J. Darton
Publisher: Cambridge University Press
ISBN: 1107031095
Category : Medical
Languages : en
Pages : 317
Book Description
Drawing together topics from a wide range of disciplines, and featuring up-to-date examples of clinical usage and research applications, this text provides a comprehensive insight into the fundamentals of magnetic biosensors and the applications of magnetic nanoparticles in medicine.
Publisher: Cambridge University Press
ISBN: 1107031095
Category : Medical
Languages : en
Pages : 317
Book Description
Drawing together topics from a wide range of disciplines, and featuring up-to-date examples of clinical usage and research applications, this text provides a comprehensive insight into the fundamentals of magnetic biosensors and the applications of magnetic nanoparticles in medicine.
Nanosensors for Smart Agriculture
Author: Adil Denizli
Publisher: Elsevier
ISBN: 0323852939
Category : Technology & Engineering
Languages : en
Pages : 825
Book Description
Nanosensors for Smart Agriculture covers new breakthroughs in smart agriculture, highlighting new technologies, such as the internet of things, big data and artificial intelligence. In addition, the book provides the many advantages of nanosensors over their micro counterparts, such as lower power consumption, higher sensitivity, lower concentration of analytes, and smaller interaction distances between the object and sensor. Sections provide information on fundamental design concepts and emerging applications of nanosensors in smart agriculture. The book highlights how, when cultivating soil, nanosensors and their wireless networks can be used for soil quality monitoring (moisture/herbicides/organic compound/trace metals monitoring in soil, etc. Other applications cover how smart nanosensors can be used for virus detection and hygiene/pathogen controls in livestocks, their use as active transport tracking devices for smart tracking and tracing, and other various applications, such as (i) nanochips for identity (radio frequency identification), (ii) food inspection, (iii) intelligent food packaging, and (iv) smart storage. This is an important reference source for materials scientists and agricultural engineers who are looking to understand more about how nanosensor technology can be used to create more efficient and sustainable agricultural systems. - Outlines the fabrication and fundamental design concepts of nanosensors for agricultural applications - Explains how nanosensors are being used throughout the agricultural cycle – from crop growth to food manufacturing - Assesses major challenges surrounding the application of nanosensors to agricultural applications in mass scale
Publisher: Elsevier
ISBN: 0323852939
Category : Technology & Engineering
Languages : en
Pages : 825
Book Description
Nanosensors for Smart Agriculture covers new breakthroughs in smart agriculture, highlighting new technologies, such as the internet of things, big data and artificial intelligence. In addition, the book provides the many advantages of nanosensors over their micro counterparts, such as lower power consumption, higher sensitivity, lower concentration of analytes, and smaller interaction distances between the object and sensor. Sections provide information on fundamental design concepts and emerging applications of nanosensors in smart agriculture. The book highlights how, when cultivating soil, nanosensors and their wireless networks can be used for soil quality monitoring (moisture/herbicides/organic compound/trace metals monitoring in soil, etc. Other applications cover how smart nanosensors can be used for virus detection and hygiene/pathogen controls in livestocks, their use as active transport tracking devices for smart tracking and tracing, and other various applications, such as (i) nanochips for identity (radio frequency identification), (ii) food inspection, (iii) intelligent food packaging, and (iv) smart storage. This is an important reference source for materials scientists and agricultural engineers who are looking to understand more about how nanosensor technology can be used to create more efficient and sustainable agricultural systems. - Outlines the fabrication and fundamental design concepts of nanosensors for agricultural applications - Explains how nanosensors are being used throughout the agricultural cycle – from crop growth to food manufacturing - Assesses major challenges surrounding the application of nanosensors to agricultural applications in mass scale
Nanosensors for Smart Cities
Author: Baoguo Han
Publisher: Elsevier
ISBN: 0128199237
Category : Technology & Engineering
Languages : en
Pages : 588
Book Description
Nanosensors for Smart Cities covers the fundamental design concepts and emerging applications of nanosensors for the creation of smart city infrastructures. Examples of major applications include logistics management, where nanosensors could be used in active transport tracking devices for smart tracking and tracing, and in agri-food productions, where nanosensors are used in nanochips for identity, and food inspection, and smart storage. This book is essential reading for researchers working in the field of advanced sensors technology, smart city technology and nanotechnology, and stakeholders involved in city management. Nanomaterials based sensors (nanosensors) can offer many advantages over their microcounterparts, including lower power consumption, high sensitivity, lower concentration of analytes, and smaller interaction distance between object and sensor. With the support of artificial intelligence (AI) tools, such as fuzzy logic, genetic algorithms, neural networks, and ambient-intelligence, sensor systems are becoming smarter. - Provides information on the fabrication and fundamental design concepts of nanosensors for intelligent systems - Explores how nanosensors are being used to better monitor and maintain infrastructure services, including street lighting, traffic management and pollution control - Assesses the challenges for creating nanomaterials-enhanced sensors for mass-market consumer products
Publisher: Elsevier
ISBN: 0128199237
Category : Technology & Engineering
Languages : en
Pages : 588
Book Description
Nanosensors for Smart Cities covers the fundamental design concepts and emerging applications of nanosensors for the creation of smart city infrastructures. Examples of major applications include logistics management, where nanosensors could be used in active transport tracking devices for smart tracking and tracing, and in agri-food productions, where nanosensors are used in nanochips for identity, and food inspection, and smart storage. This book is essential reading for researchers working in the field of advanced sensors technology, smart city technology and nanotechnology, and stakeholders involved in city management. Nanomaterials based sensors (nanosensors) can offer many advantages over their microcounterparts, including lower power consumption, high sensitivity, lower concentration of analytes, and smaller interaction distance between object and sensor. With the support of artificial intelligence (AI) tools, such as fuzzy logic, genetic algorithms, neural networks, and ambient-intelligence, sensor systems are becoming smarter. - Provides information on the fabrication and fundamental design concepts of nanosensors for intelligent systems - Explores how nanosensors are being used to better monitor and maintain infrastructure services, including street lighting, traffic management and pollution control - Assesses the challenges for creating nanomaterials-enhanced sensors for mass-market consumer products
Biosensors
Author: Toonika Rinken
Publisher: BoD – Books on Demand
ISBN: 9535121731
Category : Science
Languages : en
Pages : 470
Book Description
Nowadays, the implementation of novel technological platforms in biosensor-based developments is primarily directed to the miniaturization of analytical systems and lowering the limits of detection. Rapid scientific and technological progress enables the application of biosensors for the online detection of minute concentrations of different chemical compounds in a wide selection of matrixes and monitoring extremely low levels of biomarkers even in living organisms and individual cells. This book, including 16 chapters, characterizes the present state of the art and prospective options for micro and nanoscale activities in biosensors construction and applications.
Publisher: BoD – Books on Demand
ISBN: 9535121731
Category : Science
Languages : en
Pages : 470
Book Description
Nowadays, the implementation of novel technological platforms in biosensor-based developments is primarily directed to the miniaturization of analytical systems and lowering the limits of detection. Rapid scientific and technological progress enables the application of biosensors for the online detection of minute concentrations of different chemical compounds in a wide selection of matrixes and monitoring extremely low levels of biomarkers even in living organisms and individual cells. This book, including 16 chapters, characterizes the present state of the art and prospective options for micro and nanoscale activities in biosensors construction and applications.
Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites
Author: Sabu Thomas
Publisher: Springer Nature
ISBN: 3030909484
Category : Technology & Engineering
Languages : en
Pages : 1278
Book Description
This comprehensive reference work satisfies the need for in-depth and multidisciplinary coverage of the current state of the art of magnetic hybrid nanoalloys (MHNAs) and their polymer and ceramic nanocomposites. MHNAs represent one of the most challenging research areas in modern science and technology. These materials are stiff and strong with remarkable electronic, mechanical, electrical, thermal and biocompatible properties, and a high potential for multifunctional applications ranging from industry to medicine. The peer-reviewed literature is already extensive, witnessing rapid progress in experimental and theoretical studies on fundamental properties as well as various advanced applications. Part 1 covers theory, modelling, and synthesis (growth and alloying mechanisms) of MHNAs. Formation mechanisms of magneto-electric multiferroic materials, magnetic carbon nanotube (CNTs), and perovskite materials, which are a novel class of next-generation multifunctional nanomaterials, are discussed. The second part focuses on characterization techniques for electrical and dielectrical, rheological, biocompatibility, and other properties, as well as applications in the industrial, agricultural, environmental, and biomedical sectors. Finally, life cycle assessment is considered as essential to the development of nanomaterials and nanoproducts from MHNAs. Advanced undergraduate and graduate students, researchers, and other professionals in the fields of materials science and engineering, polymer science, surface science, bioengineering, and chemical engineering will find comprehensive and authoritative information for solving fundamental and applied problems in the characterization and use of these multifunctional nanomaterials.
Publisher: Springer Nature
ISBN: 3030909484
Category : Technology & Engineering
Languages : en
Pages : 1278
Book Description
This comprehensive reference work satisfies the need for in-depth and multidisciplinary coverage of the current state of the art of magnetic hybrid nanoalloys (MHNAs) and their polymer and ceramic nanocomposites. MHNAs represent one of the most challenging research areas in modern science and technology. These materials are stiff and strong with remarkable electronic, mechanical, electrical, thermal and biocompatible properties, and a high potential for multifunctional applications ranging from industry to medicine. The peer-reviewed literature is already extensive, witnessing rapid progress in experimental and theoretical studies on fundamental properties as well as various advanced applications. Part 1 covers theory, modelling, and synthesis (growth and alloying mechanisms) of MHNAs. Formation mechanisms of magneto-electric multiferroic materials, magnetic carbon nanotube (CNTs), and perovskite materials, which are a novel class of next-generation multifunctional nanomaterials, are discussed. The second part focuses on characterization techniques for electrical and dielectrical, rheological, biocompatibility, and other properties, as well as applications in the industrial, agricultural, environmental, and biomedical sectors. Finally, life cycle assessment is considered as essential to the development of nanomaterials and nanoproducts from MHNAs. Advanced undergraduate and graduate students, researchers, and other professionals in the fields of materials science and engineering, polymer science, surface science, bioengineering, and chemical engineering will find comprehensive and authoritative information for solving fundamental and applied problems in the characterization and use of these multifunctional nanomaterials.