Author: Joaquim M.S. Cabral
Publisher: Elsevier
ISBN: 0444632662
Category : Medical
Languages : en
Pages : 342
Book Description
Stem Cell Manufacturing discusses the required technologies that enable the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic environment as therapeutics, while concurrently achieving control, reproducibility, automation, validation, and safety of the process and the product. The advent of stem cell research unveiled the therapeutic potential of stem cells and their derivatives and increased the awareness of the public and scientific community for the topic. The successful manufacturing of stem cells and their derivatives is expected to have a positive impact in the society since it will contribute to widen the offer of therapeutic solutions to the patients. Fully defined cellular products can be used to restore the structure and function of damaged tissues and organs and to develop stem cell-based cellular therapies for the treatment of cancer and hematological disorders, autoimmune and other inflammatory diseases and genetic disorders. - Presents the first 'Flowchart' of stem cell manufacturing enabling easy understanding of the various processes in a sequential and coherent manner - Covers all bioprocess technologies required for the transfer of the bench findings to the clinic including the process components: cell signals, bioreactors, modeling, automation, safety, etc. - Presents comprehensive coverage of a true multidisciplinary topic by bringing together specialists in their particular area - Provides the basics of the processes and identifies the issues to be resolved for large scale cell culture by the bioengineer - Addresses the critical need in bioprocessing for the successful delivery of stem cell technology to the market place by involving professional engineers in sections of the book
Stem Cell Manufacturing
Author: Joaquim M.S. Cabral
Publisher: Elsevier
ISBN: 0444632662
Category : Medical
Languages : en
Pages : 342
Book Description
Stem Cell Manufacturing discusses the required technologies that enable the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic environment as therapeutics, while concurrently achieving control, reproducibility, automation, validation, and safety of the process and the product. The advent of stem cell research unveiled the therapeutic potential of stem cells and their derivatives and increased the awareness of the public and scientific community for the topic. The successful manufacturing of stem cells and their derivatives is expected to have a positive impact in the society since it will contribute to widen the offer of therapeutic solutions to the patients. Fully defined cellular products can be used to restore the structure and function of damaged tissues and organs and to develop stem cell-based cellular therapies for the treatment of cancer and hematological disorders, autoimmune and other inflammatory diseases and genetic disorders. - Presents the first 'Flowchart' of stem cell manufacturing enabling easy understanding of the various processes in a sequential and coherent manner - Covers all bioprocess technologies required for the transfer of the bench findings to the clinic including the process components: cell signals, bioreactors, modeling, automation, safety, etc. - Presents comprehensive coverage of a true multidisciplinary topic by bringing together specialists in their particular area - Provides the basics of the processes and identifies the issues to be resolved for large scale cell culture by the bioengineer - Addresses the critical need in bioprocessing for the successful delivery of stem cell technology to the market place by involving professional engineers in sections of the book
Publisher: Elsevier
ISBN: 0444632662
Category : Medical
Languages : en
Pages : 342
Book Description
Stem Cell Manufacturing discusses the required technologies that enable the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic environment as therapeutics, while concurrently achieving control, reproducibility, automation, validation, and safety of the process and the product. The advent of stem cell research unveiled the therapeutic potential of stem cells and their derivatives and increased the awareness of the public and scientific community for the topic. The successful manufacturing of stem cells and their derivatives is expected to have a positive impact in the society since it will contribute to widen the offer of therapeutic solutions to the patients. Fully defined cellular products can be used to restore the structure and function of damaged tissues and organs and to develop stem cell-based cellular therapies for the treatment of cancer and hematological disorders, autoimmune and other inflammatory diseases and genetic disorders. - Presents the first 'Flowchart' of stem cell manufacturing enabling easy understanding of the various processes in a sequential and coherent manner - Covers all bioprocess technologies required for the transfer of the bench findings to the clinic including the process components: cell signals, bioreactors, modeling, automation, safety, etc. - Presents comprehensive coverage of a true multidisciplinary topic by bringing together specialists in their particular area - Provides the basics of the processes and identifies the issues to be resolved for large scale cell culture by the bioengineer - Addresses the critical need in bioprocessing for the successful delivery of stem cell technology to the market place by involving professional engineers in sections of the book
Cell Engineering and Regeneration
Author: Heinz Redl
Publisher: Springer
ISBN: 9783319088303
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This reference work presents the origins of cells for tissue engineering and regeneration, including primary cells, tissue-specific stem cells, pluripotent stem cells and trans-differentiated or reprogrammed cells. There is particular emphasis on current understanding of tissue regeneration based on embryology and evolution studies, including mechanisms of amphibian regeneration. The book covers the use of autologous versus allogeneic cell sources, as well as various procedures used for cell isolation and cell pre-conditioning , such as cell sorting, biochemical and biophysical pre-conditioning, transfection and aggregation. It also presents cell modulation using growth factors, molecular factors, epigenetic approaches, changes in biophysical environment, cellular co-culture and other elements of the cellular microenvironment. The pathways of cell delivery are discussed with respect to specific clinical situations, including delivery of ex vivo manipulated cells via local and systemic routes, as well as activation and migration of endogenous reservoirs of reparative cells. The volume concludes with an in-depth discussion of the tracking of cells in vivo and their various regenerative activities inside the body, including differentiation, new tissue formation and actions on other cells by direct cell-to-cell communication and by secretion of biomolecules.
Publisher: Springer
ISBN: 9783319088303
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This reference work presents the origins of cells for tissue engineering and regeneration, including primary cells, tissue-specific stem cells, pluripotent stem cells and trans-differentiated or reprogrammed cells. There is particular emphasis on current understanding of tissue regeneration based on embryology and evolution studies, including mechanisms of amphibian regeneration. The book covers the use of autologous versus allogeneic cell sources, as well as various procedures used for cell isolation and cell pre-conditioning , such as cell sorting, biochemical and biophysical pre-conditioning, transfection and aggregation. It also presents cell modulation using growth factors, molecular factors, epigenetic approaches, changes in biophysical environment, cellular co-culture and other elements of the cellular microenvironment. The pathways of cell delivery are discussed with respect to specific clinical situations, including delivery of ex vivo manipulated cells via local and systemic routes, as well as activation and migration of endogenous reservoirs of reparative cells. The volume concludes with an in-depth discussion of the tracking of cells in vivo and their various regenerative activities inside the body, including differentiation, new tissue formation and actions on other cells by direct cell-to-cell communication and by secretion of biomolecules.
Bioreactors for Stem Cell Expansion and Differentiation
Author: Joaquim M.S. Cabral
Publisher: CRC Press
ISBN: 0429841817
Category : Medical
Languages : en
Pages : 260
Book Description
An international team of investigators presents thought-provoking reviews of bioreactors for stem cell expansion and differentiation and provides cutting-edge information on different bioreactor systems. The authors offer novel insights into bioreactor-based culture systems specific for tissue engineering, including sophisticated and cost-effective manufacturing strategies geared to overcome technological shortcomings that currently preclude advances towards product commercialization. This book in the fields of stem cell expansion, bioreactors, bioprocessing, and bio and tissue engineering, gives the reader a full understanding of the state-of-art and the future of these fields. Key selling features: Describes various bioreactors or stem cell culturing systems Reviews methods for stem cell expansion and differentiation for neural, cardiac, hemopoietic, mesenchymal, hepatic and other tissues cell types Distinguishes different types of bioreactors intended for different operational scales of tissue engineering and cellular therapies Includes contributions from an international team of leaders in stem cell research
Publisher: CRC Press
ISBN: 0429841817
Category : Medical
Languages : en
Pages : 260
Book Description
An international team of investigators presents thought-provoking reviews of bioreactors for stem cell expansion and differentiation and provides cutting-edge information on different bioreactor systems. The authors offer novel insights into bioreactor-based culture systems specific for tissue engineering, including sophisticated and cost-effective manufacturing strategies geared to overcome technological shortcomings that currently preclude advances towards product commercialization. This book in the fields of stem cell expansion, bioreactors, bioprocessing, and bio and tissue engineering, gives the reader a full understanding of the state-of-art and the future of these fields. Key selling features: Describes various bioreactors or stem cell culturing systems Reviews methods for stem cell expansion and differentiation for neural, cardiac, hemopoietic, mesenchymal, hepatic and other tissues cell types Distinguishes different types of bioreactors intended for different operational scales of tissue engineering and cellular therapies Includes contributions from an international team of leaders in stem cell research
Bioreactors for Tissue Engineering
Author: Julian Chaudhuri
Publisher: Springer Science & Business Media
ISBN: 1402037414
Category : Medical
Languages : en
Pages : 373
Book Description
For the first time in a single volume, the design, characterisation and operation of the bioreactor system in which the tissue is grown is detailed. Bioreactors for Tissue Engineering presents an overall picture of the current state of knowledge in the engineering of bioreactors for several tissue types (bone, cartilage, vascular), addresses the issue of mechanical conditioning of the tissue, and describes the use of techniques such as MRI for monitoring tissue growth. This unique volume is dedicated to the fundamentals and application of bioreactor technology to tissue engineering products. Not only will it appeal to graduate students and experienced researchers in tissue engineering and regenerative medicine, but also to tissue engineers and culture technologists, academic and industrial chemical engineers, biochemical engineers and cell biologists who wish to understand the criteria used to design and develop novel systems for tissue growth in vitro.
Publisher: Springer Science & Business Media
ISBN: 1402037414
Category : Medical
Languages : en
Pages : 373
Book Description
For the first time in a single volume, the design, characterisation and operation of the bioreactor system in which the tissue is grown is detailed. Bioreactors for Tissue Engineering presents an overall picture of the current state of knowledge in the engineering of bioreactors for several tissue types (bone, cartilage, vascular), addresses the issue of mechanical conditioning of the tissue, and describes the use of techniques such as MRI for monitoring tissue growth. This unique volume is dedicated to the fundamentals and application of bioreactor technology to tissue engineering products. Not only will it appeal to graduate students and experienced researchers in tissue engineering and regenerative medicine, but also to tissue engineers and culture technologists, academic and industrial chemical engineers, biochemical engineers and cell biologists who wish to understand the criteria used to design and develop novel systems for tissue growth in vitro.
Stem Cell Bioprocessing
Author: Tiago G. Fernandes
Publisher: Elsevier
ISBN: 1908818301
Category : Science
Languages : en
Pages : 236
Book Description
Stem cell bioprocessing describes the main large-scale bioprocessing strategies for both stem cell culture and purification, envisaging the application of these cells for regenerative medicine and drug screening. Bioreactor configurations are described, including their applications for stem cell expansion, and stem cell separation techniques such as isolation and purification are discussed. Basic definitions are provided concerning the different types of stem cells, from adult stem cells to the more recent induced pluripotent stem cells. The main characteristics of these different stem cell types are described, alongside the molecular mechanisms underlying their self-renewal and differentiation. The book also focuses on methodologies currently used for in vitro stem cell culture under static conditions, including the challenge of xeno-free culture conditions, as well as culture parameters that influence stem cell culture. Approaches for both stem cell culture and separation in micro-scale conditions are presented, including the use of cellular microarrays for high-throughput screening of the effect of both soluble and extracellular matrix molecules. A further section is dedicated to application of stem cells for regenerative medicine. - Maintains a unique focus on both the basic stem cell biology concepts, and their translation to large-scale bioprocessing approaches - Envisages the use of stem cells in regenerative medicine and drug screening applications - Discusses the application of microscale techniques as a tool to perform basic stem cell biology studies
Publisher: Elsevier
ISBN: 1908818301
Category : Science
Languages : en
Pages : 236
Book Description
Stem cell bioprocessing describes the main large-scale bioprocessing strategies for both stem cell culture and purification, envisaging the application of these cells for regenerative medicine and drug screening. Bioreactor configurations are described, including their applications for stem cell expansion, and stem cell separation techniques such as isolation and purification are discussed. Basic definitions are provided concerning the different types of stem cells, from adult stem cells to the more recent induced pluripotent stem cells. The main characteristics of these different stem cell types are described, alongside the molecular mechanisms underlying their self-renewal and differentiation. The book also focuses on methodologies currently used for in vitro stem cell culture under static conditions, including the challenge of xeno-free culture conditions, as well as culture parameters that influence stem cell culture. Approaches for both stem cell culture and separation in micro-scale conditions are presented, including the use of cellular microarrays for high-throughput screening of the effect of both soluble and extracellular matrix molecules. A further section is dedicated to application of stem cells for regenerative medicine. - Maintains a unique focus on both the basic stem cell biology concepts, and their translation to large-scale bioprocessing approaches - Envisages the use of stem cells in regenerative medicine and drug screening applications - Discusses the application of microscale techniques as a tool to perform basic stem cell biology studies
Bioreactors
Author: Carl-Fredrik Mandenius
Publisher: John Wiley & Sons
ISBN: 3527683372
Category : Science
Languages : en
Pages : 520
Book Description
In this expert handbook both the topics and contributors are selected so as to provide an authoritative view of possible applications for this new technology. The result is an up-to-date survey of current challenges and opportunities in the design and operation of bioreactors for high-value products in the biomedical and chemical industries. Combining theory and practice, the authors explain such leading-edge technologies as single-use bioreactors, bioreactor simulators, and soft sensor monitoring, and discuss novel applications, such as stem cell production, process development, and multi-product reactors, using case studies from academia as well as from industry. A final section addresses the latest trends, including culture media design and systems biotechnology, which are expected to have an increasing impact on bioreactor design. With its focus on cutting-edge technologies and discussions of future developments, this handbook will remain an invaluable reference for many years to come.
Publisher: John Wiley & Sons
ISBN: 3527683372
Category : Science
Languages : en
Pages : 520
Book Description
In this expert handbook both the topics and contributors are selected so as to provide an authoritative view of possible applications for this new technology. The result is an up-to-date survey of current challenges and opportunities in the design and operation of bioreactors for high-value products in the biomedical and chemical industries. Combining theory and practice, the authors explain such leading-edge technologies as single-use bioreactors, bioreactor simulators, and soft sensor monitoring, and discuss novel applications, such as stem cell production, process development, and multi-product reactors, using case studies from academia as well as from industry. A final section addresses the latest trends, including culture media design and systems biotechnology, which are expected to have an increasing impact on bioreactor design. With its focus on cutting-edge technologies and discussions of future developments, this handbook will remain an invaluable reference for many years to come.
Mesenchymal Stem Cell Therapy
Author: Lucas G. Chase
Publisher: Springer Science & Business Media
ISBN: 1627032002
Category : Science
Languages : en
Pages : 458
Book Description
Over the past decade, significant efforts have been made to develop stem cell-based therapies for difficult to treat diseases. Multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSCs), appear to hold great promise in regards to a regenerative cell-based therapy for the treatment of these diseases. Currently, more than 200 clinical trials are underway worldwide exploring the use of MSCs for the treatment of a wide range of disorders including bone, cartilage and tendon damage, myocardial infarction, graft-versus-host disease, Crohn’s disease, diabetes, multiple sclerosis, critical limb ischemia and many others. MSCs were first identified by Friendenstein and colleagues as an adherent stromal cell population within the bone marrow with the ability to form clonogenic colonies in vitro. In regards to the basic biology associated with MSCs, there has been tremendous progress towards understanding this cell population’s phenotype and function from a range of tissue sources. Despite enormous progress and an overall increased understanding of MSCs at the molecular and cellular level, several critical questions remain to be answered in regards to the use of these cells in therapeutic applications. Clinically, both autologous and allogenic approaches for the transplantation of MSCs are being explored. Several of the processing steps needed for the clinical application of MSCs, including isolation from various tissues, scalable in vitro expansion, cell banking, dose preparation, quality control parameters, delivery methods and numerous others are being extensively studied. Despite a significant number of ongoing clinical trials, none of the current therapeutic approaches have, at this point, become a standard of care treatment. Although exceptionally promising, the clinical translation of MSC-based therapies is still a work in progress. The extensive number of ongoing clinical trials is expected to provide a clearer path forward for the realization and implementation of MSCs in regenerative medicine. Towards this end, reviews of current clinical trial results and discussions of relevant topics association with the clinical application of MSCs are compiled in this book from some of the leading researchers in this exciting and rapidly advancing field. Although not absolutely all-inclusive, we hope the chapters within this book can promote and enable a better understanding of the translation of MSCs from bench-to-bedside and inspire researchers to further explore this promising and quickly evolving field.
Publisher: Springer Science & Business Media
ISBN: 1627032002
Category : Science
Languages : en
Pages : 458
Book Description
Over the past decade, significant efforts have been made to develop stem cell-based therapies for difficult to treat diseases. Multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSCs), appear to hold great promise in regards to a regenerative cell-based therapy for the treatment of these diseases. Currently, more than 200 clinical trials are underway worldwide exploring the use of MSCs for the treatment of a wide range of disorders including bone, cartilage and tendon damage, myocardial infarction, graft-versus-host disease, Crohn’s disease, diabetes, multiple sclerosis, critical limb ischemia and many others. MSCs were first identified by Friendenstein and colleagues as an adherent stromal cell population within the bone marrow with the ability to form clonogenic colonies in vitro. In regards to the basic biology associated with MSCs, there has been tremendous progress towards understanding this cell population’s phenotype and function from a range of tissue sources. Despite enormous progress and an overall increased understanding of MSCs at the molecular and cellular level, several critical questions remain to be answered in regards to the use of these cells in therapeutic applications. Clinically, both autologous and allogenic approaches for the transplantation of MSCs are being explored. Several of the processing steps needed for the clinical application of MSCs, including isolation from various tissues, scalable in vitro expansion, cell banking, dose preparation, quality control parameters, delivery methods and numerous others are being extensively studied. Despite a significant number of ongoing clinical trials, none of the current therapeutic approaches have, at this point, become a standard of care treatment. Although exceptionally promising, the clinical translation of MSC-based therapies is still a work in progress. The extensive number of ongoing clinical trials is expected to provide a clearer path forward for the realization and implementation of MSCs in regenerative medicine. Towards this end, reviews of current clinical trial results and discussions of relevant topics association with the clinical application of MSCs are compiled in this book from some of the leading researchers in this exciting and rapidly advancing field. Although not absolutely all-inclusive, we hope the chapters within this book can promote and enable a better understanding of the translation of MSCs from bench-to-bedside and inspire researchers to further explore this promising and quickly evolving field.
Single-Use Technology in Biopharmaceutical Manufacture
Author: Regine Eibl
Publisher: John Wiley & Sons
ISBN: 1119477778
Category : Medical
Languages : en
Pages : 672
Book Description
Authoritative guide to the principles, characteristics, engineering aspects, economics, and applications of disposables in the manufacture of biopharmaceuticals The revised and updated second edition of Single-Use Technology in Biopharmaceutical Manufacture offers a comprehensive examination of the most-commonly used disposables in the manufacture of biopharmaceuticals. The authors—noted experts on the topic—provide the essential information on the principles, characteristics, engineering aspects, economics, and applications. This authoritative guide contains the basic knowledge and information about disposable equipment. The author also discusses biopharmaceuticals’ applications through the lens of case studies that clearly illustrate the role of manufacturing, quality assurance, and environmental influences. This updated second edition revises existing information with recent developments that have taken place since the first edition was published. The book also presents the latest advances in the field of single-use technology and explores topics including applying single-use devices for microorganisms, human mesenchymal stem cells, and T-cells. This important book: • Contains an updated and end-to-end view of the development and manufacturing of single-use biologics • Helps in the identification of appropriate disposables and relevant vendors • Offers illustrative case studies that examine manufacturing, quality assurance, and environmental influences • Includes updated coverage on cross-functional/transversal dependencies, significant improvements made by suppliers, and the successful application of the single-use technologies Written for biopharmaceutical manufacturers, process developers, and biological and chemical engineers, Single-Use Technology in Biopharmaceutical Manufacture, 2nd Edition provides the information needed for professionals to come to an easier decision for or against disposable alternatives and to choose the appropriate system.
Publisher: John Wiley & Sons
ISBN: 1119477778
Category : Medical
Languages : en
Pages : 672
Book Description
Authoritative guide to the principles, characteristics, engineering aspects, economics, and applications of disposables in the manufacture of biopharmaceuticals The revised and updated second edition of Single-Use Technology in Biopharmaceutical Manufacture offers a comprehensive examination of the most-commonly used disposables in the manufacture of biopharmaceuticals. The authors—noted experts on the topic—provide the essential information on the principles, characteristics, engineering aspects, economics, and applications. This authoritative guide contains the basic knowledge and information about disposable equipment. The author also discusses biopharmaceuticals’ applications through the lens of case studies that clearly illustrate the role of manufacturing, quality assurance, and environmental influences. This updated second edition revises existing information with recent developments that have taken place since the first edition was published. The book also presents the latest advances in the field of single-use technology and explores topics including applying single-use devices for microorganisms, human mesenchymal stem cells, and T-cells. This important book: • Contains an updated and end-to-end view of the development and manufacturing of single-use biologics • Helps in the identification of appropriate disposables and relevant vendors • Offers illustrative case studies that examine manufacturing, quality assurance, and environmental influences • Includes updated coverage on cross-functional/transversal dependencies, significant improvements made by suppliers, and the successful application of the single-use technologies Written for biopharmaceutical manufacturers, process developers, and biological and chemical engineers, Single-Use Technology in Biopharmaceutical Manufacture, 2nd Edition provides the information needed for professionals to come to an easier decision for or against disposable alternatives and to choose the appropriate system.
Adipose-Derived Stem Cells
Author: Jeffrey M. Gimble
Publisher: Humana Press
ISBN: 9781617379611
Category : Science
Languages : en
Pages : 474
Book Description
During the past decade, a wide range of scientific disciplines have adopted the use of adipose-derived stem/stromal cells (ASCs) as an important tool for research and discovery. In Adipose-Derived Stem Cells: Methods and Protocols, experts from the field, including members of the esteemed International Federation of Adipose Therapeutics and Science (IFATS), provide defined and established protocols in order to further codify the utilization of these powerful and accessible cells. With chapters organized around approaches spanning the discovery, pre-clinical, and clinical processes, much of the emphasis is placed on human ASC, while additional techniques involving small and large animal species are included. As a volume in the highly successful Methods in Molecular BiologyTM series, the detailed contributions include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Adipose-Derived Stem Cells: Methods and Protocols serves as a vital reference text for experienced researchers as well as new students on the path to further exploring the incredible potential of ASCs.
Publisher: Humana Press
ISBN: 9781617379611
Category : Science
Languages : en
Pages : 474
Book Description
During the past decade, a wide range of scientific disciplines have adopted the use of adipose-derived stem/stromal cells (ASCs) as an important tool for research and discovery. In Adipose-Derived Stem Cells: Methods and Protocols, experts from the field, including members of the esteemed International Federation of Adipose Therapeutics and Science (IFATS), provide defined and established protocols in order to further codify the utilization of these powerful and accessible cells. With chapters organized around approaches spanning the discovery, pre-clinical, and clinical processes, much of the emphasis is placed on human ASC, while additional techniques involving small and large animal species are included. As a volume in the highly successful Methods in Molecular BiologyTM series, the detailed contributions include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Adipose-Derived Stem Cells: Methods and Protocols serves as a vital reference text for experienced researchers as well as new students on the path to further exploring the incredible potential of ASCs.
Stem Cells
Author: Michal K. Stachowiak
Publisher: World Scientific
ISBN: 9814317934
Category : Medical
Languages : en
Pages : 394
Book Description
Fast-moving and ever-changing, stem cell science and research presents ongoing ethical and legal challenges in many countries. Each development and innovation throws up new challenges. This is the case even where new developments initially seem to solve old dilemmas. Sometimes it becomes evident that new science does not in fact solve old problems and, for that reason, the ethical issues remain. In recognition of this, this book presents innovative and creative analyses of a range of ethical and legal challenges raised by stem cell research and its potential and actual application. The editors.
Publisher: World Scientific
ISBN: 9814317934
Category : Medical
Languages : en
Pages : 394
Book Description
Fast-moving and ever-changing, stem cell science and research presents ongoing ethical and legal challenges in many countries. Each development and innovation throws up new challenges. This is the case even where new developments initially seem to solve old dilemmas. Sometimes it becomes evident that new science does not in fact solve old problems and, for that reason, the ethical issues remain. In recognition of this, this book presents innovative and creative analyses of a range of ethical and legal challenges raised by stem cell research and its potential and actual application. The editors.