Biomolecular Feedback Systems

Biomolecular Feedback Systems PDF Author: Domitilla Del Vecchio
Publisher: Princeton University Press
ISBN: 1400850509
Category : Science
Languages : en
Pages : 287

Get Book Here

Book Description
This book provides an accessible introduction to the principles and tools for modeling, analyzing, and synthesizing biomolecular systems. It begins with modeling tools such as reaction-rate equations, reduced-order models, stochastic models, and specific models of important core processes. It then describes in detail the control and dynamical systems tools used to analyze these models. These include tools for analyzing stability of equilibria, limit cycles, robustness, and parameter uncertainty. Modeling and analysis techniques are then applied to design examples from both natural systems and synthetic biomolecular circuits. In addition, this comprehensive book addresses the problem of modular composition of synthetic circuits, the tools for analyzing the extent of modularity, and the design techniques for ensuring modular behavior. It also looks at design trade-offs, focusing on perturbations due to noise and competition for shared cellular resources. Featuring numerous exercises and illustrations throughout, Biomolecular Feedback Systems is the ideal textbook for advanced undergraduates and graduate students. For researchers, it can also serve as a self-contained reference on the feedback control techniques that can be applied to biomolecular systems. Provides a user-friendly introduction to essential concepts, tools, and applications Covers the most commonly used modeling methods Addresses the modular design problem for biomolecular systems Uses design examples from both natural systems and synthetic circuits Solutions manual (available only to professors at press.princeton.edu) An online illustration package is available to professors at press.princeton.edu

Biomolecular Feedback Systems

Biomolecular Feedback Systems PDF Author: Domitilla Del Vecchio
Publisher: Princeton University Press
ISBN: 1400850509
Category : Science
Languages : en
Pages : 287

Get Book Here

Book Description
This book provides an accessible introduction to the principles and tools for modeling, analyzing, and synthesizing biomolecular systems. It begins with modeling tools such as reaction-rate equations, reduced-order models, stochastic models, and specific models of important core processes. It then describes in detail the control and dynamical systems tools used to analyze these models. These include tools for analyzing stability of equilibria, limit cycles, robustness, and parameter uncertainty. Modeling and analysis techniques are then applied to design examples from both natural systems and synthetic biomolecular circuits. In addition, this comprehensive book addresses the problem of modular composition of synthetic circuits, the tools for analyzing the extent of modularity, and the design techniques for ensuring modular behavior. It also looks at design trade-offs, focusing on perturbations due to noise and competition for shared cellular resources. Featuring numerous exercises and illustrations throughout, Biomolecular Feedback Systems is the ideal textbook for advanced undergraduates and graduate students. For researchers, it can also serve as a self-contained reference on the feedback control techniques that can be applied to biomolecular systems. Provides a user-friendly introduction to essential concepts, tools, and applications Covers the most commonly used modeling methods Addresses the modular design problem for biomolecular systems Uses design examples from both natural systems and synthetic circuits Solutions manual (available only to professors at press.princeton.edu) An online illustration package is available to professors at press.princeton.edu

Feedback Control in Systems Biology

Feedback Control in Systems Biology PDF Author: Carlo Cosentino
Publisher: CRC Press
ISBN: 1439816905
Category : Mathematics
Languages : en
Pages : 298

Get Book Here

Book Description
Like engineering systems, biological systems must also operate effectively in the presence of internal and external uncertainty—such as genetic mutations or temperature changes, for example. It is not surprising, then, that evolution has resulted in the widespread use of feedback, and research in systems biology over the past decade has shown that feedback control systems are widely found in biology. As an increasing number of researchers in the life sciences become interested in control-theoretic ideas such as feedback, stability, noise and disturbance attenuation, and robustness, there is a need for a text that explains feedback control as it applies to biological systems. Written by established researchers in both control engineering and systems biology, Feedback Control in Systems Biology explains how feedback control concepts can be applied to systems biology. Filling the need for a text on control theory for systems biologists, it provides an overview of relevant ideas and methods from control engineering and illustrates their application to the analysis of biological systems with case studies in cellular and molecular biology. Control Theory for Systems Biologists The book focuses on the fundamental concepts used to analyze the effects of feedback in biological control systems, rather than the control system design methods that form the core of most control textbooks. In addition, the authors do not assume that readers are familiar with control theory. They focus on "control applications" such as metabolic and gene-regulatory networks rather than aircraft, robots, or engines, and on mathematical models derived from classical reaction kinetics rather than classical mechanics. Another significant feature of the book is that it discusses nonlinear systems, an understanding of which is crucial for systems biologists because of the highly nonlinear nature of biological systems. The authors cover tools and techniques for the analysis of linear and nonlinear systems; negative and positive feedback; robustness analysis methods; techniques for the reverse-engineering of biological interaction networks; and the analysis of stochastic biological control systems. They also identify new research directions for control theory inspired by the dynamic characteristics of biological systems. A valuable reference for researchers, this text offers a sound starting point for scientists entering this fascinating and rapidly developing field.

Feedback Systems

Feedback Systems PDF Author: Karl Johan Åström
Publisher: Princeton University Press
ISBN: 069121347X
Category : Technology & Engineering
Languages : en
Pages : 523

Get Book Here

Book Description
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory

Spectroscopy and Modeling of Biomolecular Building Blocks

Spectroscopy and Modeling of Biomolecular Building Blocks PDF Author: Jean-Pierre Schermann
Publisher: Elsevier
ISBN: 0080558224
Category : Science
Languages : en
Pages : 499

Get Book Here

Book Description
Spectroscopy and Modeling of Biomolecular Building Blocks presents an overview of recent advances in the intertwining of the following research fields: photon and electron spectroscopy, quantum chemistry, modelling and mass-spectrometry. The coupling of these disciplines offers a new point of view to the understanding of isolated elementary building blocks of biomolecules and their assemblies. It allows the unambiguous separation between intrinsic properties of biomolecular systems and those induced by the presence of their environment. The first chapters provide background in modelling (I), frequency-resolved spectroscopy using microwave, infrared and UV photons, time-resolved spectroscopy in the femtosecond domain and energy-resolved electron spectroscopy (II) and production of gas-phase neutral and ionic biomolecular species, mass-spectrometry, ion mobility and BIRD techniques (III). Chapter IV is devoted to case studies of gas-phase experimental investigations coupled to quantum or classical calculations. The topics are structural studies of nucleobases and oligonucleotides, peptides and proteins, sugars; neuromolecules; non-covalent complexes; chiral systems, interactions of low-energy electrons with biomolecules in the radiation chemistry context and very large gas-phase biomolecular systems. The fifth chapter concerns the link between gas-phase and liquid-phase. Different treatments of solvation are illustrated through examples pointing out the influence of progressive addition of water molecules upon properties of nucleobases, peptides, sugars and neuromolecules. - Offer a new perspective to the understanding of isolated elementary building blocks of bio molecules - Includes case studies of experimental investigations coupled to quantum or classical calculations

Modeling Biomolecular Networks in Cells

Modeling Biomolecular Networks in Cells PDF Author: Luonan Chen
Publisher: Springer Science & Business Media
ISBN: 1849962146
Category : Technology & Engineering
Languages : en
Pages : 343

Get Book Here

Book Description
Modeling Biomolecular Networks in Cells shows how the interaction between the molecular components of basic living organisms can be modelled mathematically and the models used to create artificial biological entities within cells. Such forward engineering is a difficult task but the nonlinear dynamical methods espoused in this book simplify the biology so that it can be successfully understood and the synthesis of simple biological oscillators and rhythm-generators made feasible. Such simple units can then be co-ordinated using intercellular signal biomolecules. The formation of such man-made multicellular networks with a view to the production of biosensors, logic gates, new forms of integrated circuitry based on "gene-chips" and even biological computers is an important step in the design of faster and more flexible "electronics". The book also provides theoretical frameworks and tools with which to analyze the nonlinear dynamical phenomena which arise from the connection of building units in a biomolecular network.

Biomolecular Electronics

Biomolecular Electronics PDF Author: Paolo Facci
Publisher: William Andrew
ISBN: 1455731528
Category : Technology & Engineering
Languages : en
Pages : 257

Get Book Here

Book Description
Biomolecular Electronics – the electrical control of biological phenomena – is a scientific challenge that, once fully realized, will find a wide range of applications from electronics and computing to medicine and therapeutic techniques.This new arena of biomolecular electronics is approached using familiar concepts from many areas such as electrochemistry, device electronics and some mechanisms of gene expression level control. Practical techniques are explored by which electrical and electronic means can be used to control biological reactions and processes. Also, the current and future applications for this new and expanding field are discussed.This book is aimed at scientists and engineers involved in both research and commercial applications across fields including bioelectronics, bionanotechnology, electrochemistry and nanomedicine – providing a state-of-the-art survey of what's going on at the boundary between biology and electronic technology at the micro- and nano- scales, along with a suggestive insight into future possible developments. - Demystifies the science and applications of electrically-driven biological reactions - Explains how the techniques of bioelectronics and electrochemistry can be deployed as biological control technologies - Provides applications information for diverse areas from bio-electrochemistry to electrical control of gene expression levels

Control Theory and Systems Biology

Control Theory and Systems Biology PDF Author: Pablo A. Iglesias
Publisher: MIT Press
ISBN: 0262013347
Category : Biological control systems
Languages : en
Pages : 359

Get Book Here

Book Description
A survey of how engineering techniques from control and systems theory can be used to help biologists understand the behavior of cellular systems.

Inspired by Biology

Inspired by Biology PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309134293
Category : Science
Languages : en
Pages : 170

Get Book Here

Book Description
Scientists have long desired to create synthetic systems that function with the precision and efficiency of biological systems. Using new techniques, researchers are now uncovering principles that could allow the creation of synthetic materials that can perform tasks as precise as biological systems. To assess the current work and future promise of the biology-materials science intersection, the Department of Energy and the National Science Foundation asked the NRC to identify the most compelling questions and opportunities at this interface, suggest strategies to address them, and consider connections with national priorities such as healthcare and economic growth. This book presents a discussion of principles governing biomaterial design, a description of advanced materials for selected functions such as energy and national security, an assessment of biomolecular materials research tools, and an examination of infrastructure and resources for bridging biological and materials science.

Ultimate Computing

Ultimate Computing PDF Author: S.R. Hameroff
Publisher: Elsevier
ISBN: 0444600094
Category : Computers
Languages : en
Pages : 380

Get Book Here

Book Description
The possibility of direct interfacing between biological and technological information devices could result in a merger of mind and machine - Ultimate Computing. This book, a thorough consideration of this idea, involves a number of disciplines, including biochemistry, cognitive science, computer science, engineering, mathematics, microbiology, molecular biology, pharmacology, philosophy, physics, physiology, and psychology.

Process Operational Safety and Cybersecurity

Process Operational Safety and Cybersecurity PDF Author: Zhe Wu
Publisher: Springer Nature
ISBN: 3030711838
Category : Technology & Engineering
Languages : en
Pages : 299

Get Book Here

Book Description
This book is focused on the development of rigorous, yet practical, methods for the design of advanced process control systems to improve process operational safety and cybersecurity for a wide range of nonlinear process systems. Process Operational Safety and Cybersecurity develops designs for novel model predictive control systems accounting for operational safety considerations, presents theoretical analysis on recursive feasibility and simultaneous closed-loop stability and safety, and discusses practical considerations including data-driven modeling of nonlinear processes, characterization of closed-loop stability regions and computational efficiency. The text then shifts focus to the design of integrated detection and model predictive control systems which improve process cybersecurity by efficiently detecting and mitigating the impact of intelligent cyber-attacks. The book explores several key areas relating to operational safety and cybersecurity including: machine-learning-based modeling of nonlinear dynamical systems for model predictive control; a framework for detection and resilient control of sensor cyber-attacks for nonlinear systems; insight into theoretical and practical issues associated with the design of control systems for process operational safety and cybersecurity; and a number of numerical simulations of chemical process examples and Aspen simulations of large-scale chemical process networks of industrial relevance. A basic knowledge of nonlinear system analysis, Lyapunov stability techniques, dynamic optimization, and machine-learning techniques will help readers to understand the methodologies proposed. The book is a valuable resource for academic researchers and graduate students pursuing research in this area as well as for process control engineers. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.