Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning

Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning PDF Author: Segall, Richard S.
Publisher: IGI Global
ISBN: 1799884570
Category : Computers
Languages : en
Pages : 394

Get Book Here

Book Description
During these uncertain and turbulent times, intelligent technologies including artificial neural networks (ANN) and machine learning (ML) have played an incredible role in being able to predict, analyze, and navigate unprecedented circumstances across a number of industries, ranging from healthcare to hospitality. Multi-factor prediction in particular has been especially helpful in dealing with the most current pressing issues such as COVID-19 prediction, pneumonia detection, cardiovascular diagnosis and disease management, automobile accident prediction, and vacation rental listing analysis. To date, there has not been much research content readily available in these areas, especially content written extensively from a user perspective. Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning is designed to cover a brief and focused range of essential topics in the field with perspectives, models, and first-hand experiences shared by prominent researchers, discussing applications of artificial neural networks (ANN) and machine learning (ML) for biomedical and business applications and a listing of current open-source software for neural networks, machine learning, and artificial intelligence. It also presents summaries of currently available open source software that utilize neural networks and machine learning. The book is ideal for professionals, researchers, students, and practitioners who want to more fully understand in a brief and concise format the realm and technologies of artificial neural networks (ANN) and machine learning (ML) and how they have been used for prediction of multi-disciplinary research problems in a multitude of disciplines.

Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models

Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models PDF Author: Jorge Garza Ulloa
Publisher: Elsevier
ISBN: 0128207183
Category : Science
Languages : en
Pages : 704

Get Book Here

Book Description
Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models focuses on the relationship between three different multidisciplinary branches of engineering: Biomedical Engineering, Cognitive Science and Computer Science through Artificial Intelligence models. These models will be used to study how the nervous system and musculoskeletal system obey movement orders from the brain, as well as the mental processes of the information during cognition when injuries and neurologic diseases are present in the human body. The interaction between these three areas are studied in this book with the objective of obtaining AI models on injuries and neurologic diseases of the human body, studying diseases of the brain, spine and the nerves that connect them with the musculoskeletal system. There are more than 600 diseases of the nervous system, including brain tumors, epilepsy, Parkinson's disease, stroke, and many others. These diseases affect the human cognitive system that sends orders from the central nervous system (CNS) through the peripheral nervous systems (PNS) to do tasks using the musculoskeletal system. These actions can be detected by many Bioinstruments (Biomedical Instruments) and cognitive device data, allowing us to apply AI using Machine Learning-Deep Learning-Cognitive Computing models through algorithms to analyze, detect, classify, and forecast the process of various illnesses, diseases, and injuries of the human body. Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models provides readers with the study of injuries, illness, and neurological diseases of the human body through Artificial Intelligence using Machine Learning (ML), Deep Learning (DL) and Cognitive Computing (CC) models based on algorithms developed with MATLAB® and IBM Watson®. Provides an introduction to Cognitive science, cognitive computing and human cognitive relation to help in the solution of AI Biomedical engineering problems Explain different Artificial Intelligence (AI) including evolutionary algorithms to emulate natural evolution, reinforced learning, Artificial Neural Network (ANN) type and cognitive learning and to obtain many AI models for Biomedical Engineering problems Includes coverage of the evolution Artificial Intelligence through Machine Learning (ML), Deep Learning (DL), Cognitive Computing (CC) using MATLAB® as a programming language with many add-on MATLAB® toolboxes, and AI based commercial products cloud services as: IBM (Cognitive Computing, IBM Watson®, IBM Watson Studio®, IBM Watson Studio Visual Recognition®), and others Provides the necessary tools to accelerate obtaining results for the analysis of injuries, illness, and neurologic diseases that can be detected through the static, kinetics and kinematics, and natural body language data and medical imaging techniques applying AI using ML-DL-CC algorithms with the objective of obtaining appropriate conclusions to create solutions that improve the quality of life of patients

Research Anthology on Artificial Neural Network Applications

Research Anthology on Artificial Neural Network Applications PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1668424096
Category : Computers
Languages : en
Pages : 1575

Get Book Here

Book Description
Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.

Research Anthology on Macroeconomics and the Achievement of Global Stability

Research Anthology on Macroeconomics and the Achievement of Global Stability PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1668474611
Category : Business & Economics
Languages : en
Pages : 1953

Get Book Here

Book Description
The COVID-19 pandemic has shocked economies around the world and created an era of global instability. As the pandemic comes to a close, it is essential to examine global economies in order to achieve and maintain global stability. By maintaining global stability, the world may be prepared for future economic shocks. The Research Anthology on Macroeconomics and the Achievement of Global Stability discusses the emerging opportunities, challenges, and strategies within the field of macroeconomics. It features advancements in the field that encourage global economic stability. Covering topics such as Islamic banking, international trade, and Econophysics, this major reference work is an ideal resource for economists, government leaders and officials, business leaders and executives, finance professionals, students and educators of higher education, librarians, researchers, and academicians.

Real-Time Applications of Machine Learning in Cyber-Physical Systems

Real-Time Applications of Machine Learning in Cyber-Physical Systems PDF Author: Easwaran, Balamurugan
Publisher: IGI Global
ISBN: 1799893103
Category : Computers
Languages : en
Pages : 307

Get Book Here

Book Description
Technological advancements of recent decades have reshaped the way people socialize, work, learn, and ultimately live. The use of cyber-physical systems (CPS) specifically have helped people lead their lives with greater control and freedom. CPS domains have great societal significance, providing crucial assistance in industries ranging from security to healthcare. At the same time, machine learning (ML) algorithms are known for being substantially efficient, high performing, and have become a real standard due to greater accessibility, and now more than ever, multidisciplinary applications of ML for CPS have become a necessity to help uncover constructive solutions for real-world problems. Real-Time Applications of Machine Learning in Cyber-Physical Systems provides a relevant theoretical framework and the most recent empirical findings on various real-time applications of machine learning in cyber-physical systems. Covering topics like intrusion detection systems, predictive maintenance, and seizure prediction, this book is an essential resource for researchers, machine learning professionals, independent researchers, scholars, scientists, libraries, and academicians.

Developing Linear Algebra Codes on Modern Processors: Emerging Research and Opportunities

Developing Linear Algebra Codes on Modern Processors: Emerging Research and Opportunities PDF Author: Catalán Pallarés, Sandra
Publisher: IGI Global
ISBN: 1799870847
Category : Mathematics
Languages : en
Pages : 279

Get Book Here

Book Description
Optimized linear algebra (LA) libraries that are able to exploit the underlying hardware are always of interest in the high-performance computing community. The implementation of LA software has evolved along with computer architecture, while the specification remains unaltered almost from the beginning. It is important to differentiate between the specification of LA libraries and their implementation. Because LA libraries pursue high performance, the implementation for a given architecture needs to be optimized for it specifically. However, the type of operations included in the libraries, the input/output parameters, and the data types to be handled are common to all of them. This is why, while the specification remains constant, the implementation evolves with the creation of new architectures. Developing Linear Algebra Codes on Modern Processors: Emerging Research and Opportunities presents the main characteristics of LA libraries, showing the differences between the standards for sparse and dense versions. It further explores relevant linear algebra problems and shows, in a clear and understandable way, how to solve them using different computer architectures. Covering topics such as programming models, batched computing, and distributed memory platforms, this premier reference source is an excellent resource for programmers, computer scientists, engineers, students and faculty of higher education, librarians, researchers, and academicians.

Applications of Computational Science in Artificial Intelligence

Applications of Computational Science in Artificial Intelligence PDF Author: Nayyar, Anand
Publisher: IGI Global
ISBN: 1799890147
Category : Computers
Languages : en
Pages : 284

Get Book Here

Book Description
Computational science, in collaboration with engineering, acts as a bridge between hypothesis and experimentation. It is essential to use computational methods and their applications in order to automate processes as many major industries rely on advanced modeling and simulation. Computational science is inherently interdisciplinary and can be used to identify and evaluate complicated systems, foresee their performance, and enhance procedures and strategies. Applications of Computational Science in Artificial Intelligence delivers technological solutions to improve smart technologies architecture, healthcare, and environmental sustainability. It also provides background on key aspects such as computational solutions, computation framework, smart prediction, and healthcare solutions. Covering a range of topics such as high-performance computing and software infrastructure, this reference work is ideal for software engineers, practitioners, researchers, scholars, academicians, instructors, and students.

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare PDF Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385

Get Book Here

Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

State of the Art in Neural Networks and Their Applications

State of the Art in Neural Networks and Their Applications PDF Author: Ayman S. El-Baz
Publisher: Academic Press
ISBN: 0128218495
Category : Science
Languages : en
Pages : 326

Get Book Here

Book Description
State of the Art in Neural Networks and Their Applications presents the latest advances in artificial neural networks and their applications across a wide range of clinical diagnoses. Advances in the role of machine learning, artificial intelligence, deep learning, cognitive image processing and suitable data analytics useful for clinical diagnosis and research applications are covered, including relevant case studies. The application of Neural Network, Artificial Intelligence, and Machine Learning methods in biomedical image analysis have resulted in the development of computer-aided diagnostic (CAD) systems that aim towards the automatic early detection of several severe diseases. State of the Art in Neural Networks and Their Applications is presented in two volumes. Volume 1 covers the state-of-the-art deep learning approaches for the detection of renal, retinal, breast, skin, and dental abnormalities and more. - Includes applications of neural networks, AI, machine learning, and deep learning techniques to a variety of imaging technologies - Provides in-depth technical coverage of computer-aided diagnosis (CAD), with coverage of computer-aided classification, Unified Deep Learning Frameworks, mammography, fundus imaging, optical coherence tomography, cryo-electron tomography, 3D MRI, CT, and more - Covers deep learning for several medical conditions including renal, retinal, breast, skin, and dental abnormalities, Medical Image Analysis, as well as detection, segmentation, and classification via AI

Challenges and Applications for Hand Gesture Recognition

Challenges and Applications for Hand Gesture Recognition PDF Author: Kane, Lalit
Publisher: IGI Global
ISBN: 1799894363
Category : Computers
Languages : en
Pages : 249

Get Book Here

Book Description
Due to the rise of new applications in electronic appliances and pervasive devices, automated hand gesture recognition (HGR) has become an area of increasing interest. HGR developments have come a long way from the traditional sign language recognition (SLR) systems to depth and wearable sensor-based electronic devices. Where the former are more laboratory-oriented frameworks, the latter are comparatively realistic and practical systems. Based on various gestural traits, such as hand postures, gesture recognition takes different forms. Consequently, different interpretations can be associated with gestures in various application contexts. A considerable amount of research is still needed to introduce more practical gesture recognition systems and associated algorithms. Challenges and Applications for Hand Gesture Recognition highlights the state-of-the-art practices of HGR research and discusses key areas such as challenges, opportunities, and future directions. Covering a range of topics such as wearable sensors and hand kinematics, this critical reference source is ideal for researchers, academicians, scholars, industry professionals, engineers, instructors, and students.