Author: L Hench
Publisher: Elsevier
ISBN: 1845690869
Category : Science
Languages : en
Pages : 298
Book Description
Maintaining quality of life in an ageing population is one of the great challenges of the 21st Century. This book summarises how this challenge is being met by multi-disciplinary developments of specialty biomaterials, devices, artificial organs and in-vitro growth of human cells as tissue engineered constructs.Biomaterials, Artificial Organs and Tissue Engineering is intended for use as a textbook in a one semester course for upper level BS, MS and Meng students. The 25 chapters are organized in five parts: Part one provides an introduction to living and man-made materials for the non-specialist; Part two is an overview of clinical applications of various biomaterials and devices; Part three summarises the bioengineering principles, materials and designs used in artificial organs; Part four presents the concepts, cell techniques, scaffold materials and applications of tissue engineering; Part five provides an overview of the complex socio-economic factors involved in technology based healthcare, including regulatory controls, technology transfer processes and ethical issues. - Comprehensive introduction to living and man-made materials - Looks at clinical applications of various biomaterials and devices - Bioengineering principles, materials and designs used in artificial organs are summarised
Biomaterials, Artificial Organs and Tissue Engineering
Biomaterials for Artificial Organs
Author: Michael Lysaght
Publisher: Elsevier
ISBN: 0857090844
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
The worldwide demand for organ transplants far exceeds available donor organs. Consequently some patients die whilst waiting for a transplant. Synthetic alternatives are therefore imperative to improve the quality of, and in some cases, save people's lives. Advances in biomaterials have generated a range of materials and devices for use either outside the body or through implantation to replace or assist functions which may have been lost through disease or injury. Biomaterials for artificial organs reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs.Part one discusses commodity biomaterials including membranes for oxygenators and plasmafilters, titanium and cobalt chromium alloys for hips and knees, polymeric joint-bearing surfaces for total joint replacements, biomaterials for pacemakers, defibrillators and neurostimulators and mechanical and bioprosthetic heart valves. Part two goes on to investigate advanced and next generation biomaterials including small intestinal submucosa and other decullarized matrix biomaterials for tissue repair, new ceramics and composites for joint replacement surgery, biomaterials for improving the blood and tissue compatibility of total artificial hearts (TAH) and ventricular assist devices (VAD), nanostructured biomaterials for artificial tissues and organs and matrices for tissue engineering and regenerative medicine.With its distinguished editors and international team of contributors Biomaterials for artificial organs is an invaluable resource to researchers, scientists and academics concerned with the advancement of artificial organs. - Reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs - Discusses commodity biomaterials including membranes for oxygenators and cobalt chromium alloys for hips and knees and polymeric joint-bearing surfaces for total joint replacements - Further biomaterials utilised in pacemakers, defibrillators, neurostimulators and mechanical and bioprosthetic heart valve are also explored
Publisher: Elsevier
ISBN: 0857090844
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
The worldwide demand for organ transplants far exceeds available donor organs. Consequently some patients die whilst waiting for a transplant. Synthetic alternatives are therefore imperative to improve the quality of, and in some cases, save people's lives. Advances in biomaterials have generated a range of materials and devices for use either outside the body or through implantation to replace or assist functions which may have been lost through disease or injury. Biomaterials for artificial organs reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs.Part one discusses commodity biomaterials including membranes for oxygenators and plasmafilters, titanium and cobalt chromium alloys for hips and knees, polymeric joint-bearing surfaces for total joint replacements, biomaterials for pacemakers, defibrillators and neurostimulators and mechanical and bioprosthetic heart valves. Part two goes on to investigate advanced and next generation biomaterials including small intestinal submucosa and other decullarized matrix biomaterials for tissue repair, new ceramics and composites for joint replacement surgery, biomaterials for improving the blood and tissue compatibility of total artificial hearts (TAH) and ventricular assist devices (VAD), nanostructured biomaterials for artificial tissues and organs and matrices for tissue engineering and regenerative medicine.With its distinguished editors and international team of contributors Biomaterials for artificial organs is an invaluable resource to researchers, scientists and academics concerned with the advancement of artificial organs. - Reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs - Discusses commodity biomaterials including membranes for oxygenators and cobalt chromium alloys for hips and knees and polymeric joint-bearing surfaces for total joint replacements - Further biomaterials utilised in pacemakers, defibrillators, neurostimulators and mechanical and bioprosthetic heart valve are also explored
Tissue Engineering for Artificial Organs, 2 Volume Set
Author: Anwarul Hasan
Publisher: John Wiley & Sons
ISBN: 3527338632
Category : Science
Languages : en
Pages : 762
Book Description
A comprehensive overview of the latest achievements, trends, and the current state of the art of this important and rapidly expanding field. Clearly and logically structured, the first part of the book explores the fundamentals of tissue engineering, providing a separate chapter on each of the basic topics, including biomaterials stem cells, biosensors and bioreactors. The second part then follows a more applied approach, discussing various applications of tissue engineering, such as the replacement or repairing of skins, cartilages, livers and blood vessels, to trachea, lungs and cardiac tissues, to musculoskeletal tissue engineering used for bones and ligaments as well as pancreas, kidney and neural tissue engineering for the brain. The book concludes with a look at future technological advances. An invaluable reading for entrants to the field in biomedical engineering as well as expert researchers and developers in industry.
Publisher: John Wiley & Sons
ISBN: 3527338632
Category : Science
Languages : en
Pages : 762
Book Description
A comprehensive overview of the latest achievements, trends, and the current state of the art of this important and rapidly expanding field. Clearly and logically structured, the first part of the book explores the fundamentals of tissue engineering, providing a separate chapter on each of the basic topics, including biomaterials stem cells, biosensors and bioreactors. The second part then follows a more applied approach, discussing various applications of tissue engineering, such as the replacement or repairing of skins, cartilages, livers and blood vessels, to trachea, lungs and cardiac tissues, to musculoskeletal tissue engineering used for bones and ligaments as well as pancreas, kidney and neural tissue engineering for the brain. The book concludes with a look at future technological advances. An invaluable reading for entrants to the field in biomedical engineering as well as expert researchers and developers in industry.
Biomaterials for Organ and Tissue Regeneration
Author: Nihal Vrana
Publisher: Woodhead Publishing
ISBN: 0081029071
Category : Technology & Engineering
Languages : en
Pages : 847
Book Description
Biomaterials for Organ and Tissue Regeneration: New Technologies and Future Prospects examines the use of biomaterials in applications related to artificial tissues and organs. With a strong focus on fundamental and traditional tissue engineering strategies, the book also examines how emerging and enabling technologies are being developed and applied. Sections provide essential information on biomaterial, cell properties and cell types used in organ generation. A section on state-of-the-art in organ regeneration for clinical purposes is followed by a discussion on enabling technologies, such as bioprinting, on chip organ systems and in silico simulations. - Provides a systematic overview of the field, from fundamentals, to current challenges and opportunities - Encompasses the classic paradigm of tissue engineering for creation of new functional tissue - Discusses enabling technologies such as bioprinting, organ-on-chip systems and in silico simulations
Publisher: Woodhead Publishing
ISBN: 0081029071
Category : Technology & Engineering
Languages : en
Pages : 847
Book Description
Biomaterials for Organ and Tissue Regeneration: New Technologies and Future Prospects examines the use of biomaterials in applications related to artificial tissues and organs. With a strong focus on fundamental and traditional tissue engineering strategies, the book also examines how emerging and enabling technologies are being developed and applied. Sections provide essential information on biomaterial, cell properties and cell types used in organ generation. A section on state-of-the-art in organ regeneration for clinical purposes is followed by a discussion on enabling technologies, such as bioprinting, on chip organ systems and in silico simulations. - Provides a systematic overview of the field, from fundamentals, to current challenges and opportunities - Encompasses the classic paradigm of tissue engineering for creation of new functional tissue - Discusses enabling technologies such as bioprinting, organ-on-chip systems and in silico simulations
Biomedical Membranes And (Bio)artificial Organs
Author: Dimitrios Stamatialis
Publisher: World Scientific
ISBN: 9813223987
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
This book focusses on the development of biomedical membranes and their applications for (bio)artificial organs. It covers the state of art and main challenges for applying synthetic membranes in these organs. It also highlights the importance of accomplishing an integration of engineering with biology and medicine to understand and manage the scientific, industrial, clinical and ethical aspects of these organs.The compendium consists of 11 chapters, written by world renowned experts in the fields of membrane technology, biomaterials science and technology, cell biology, medicine and engineering. Every chapter describes the clinical needs and the materials, membranes, and concepts required for the successful development of the (bio)artificial organs.This text is suitable for undergraduate and graduate students in biomedical engineering, materials science and membrane science and technology, as well as, for professionals and researchers working in these fields.
Publisher: World Scientific
ISBN: 9813223987
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
This book focusses on the development of biomedical membranes and their applications for (bio)artificial organs. It covers the state of art and main challenges for applying synthetic membranes in these organs. It also highlights the importance of accomplishing an integration of engineering with biology and medicine to understand and manage the scientific, industrial, clinical and ethical aspects of these organs.The compendium consists of 11 chapters, written by world renowned experts in the fields of membrane technology, biomaterials science and technology, cell biology, medicine and engineering. Every chapter describes the clinical needs and the materials, membranes, and concepts required for the successful development of the (bio)artificial organs.This text is suitable for undergraduate and graduate students in biomedical engineering, materials science and membrane science and technology, as well as, for professionals and researchers working in these fields.
Stem Cells and Biomaterials for Regenerative Medicine
Author: Marek J. Los
Publisher: Academic Press
ISBN: 0128122781
Category : Science
Languages : en
Pages : 252
Book Description
Stem Cells and Biomaterials for Regenerative Medicine addresses the urgent need for a compact source of information on both the cellular and biomaterial aspects of regenerative medicine. By developing a mutual understanding between three separately functioning areas of science—medicine, the latest technology, and clinical economics—the volume encourages interdisciplinary relationships that will lead to solutions for the significant challenges faced by today's regenerative medicine. Users will find sections on the homeostatic balance created by apoptosis and proliferating tissue stem cells, the naturally regenerative capacities of various tissue types, the potential regenerative benefits of iPS-generation, various differentiation protocols, and more. Written in easily accessbile language, this volume is appropriate for any professional or medical staff looking to expand their knowledge with regard to stem cells and regenerative medicine. - Arms readers with key information on tissue engineering, artificial organs and biomaterials, while using broadly accessible language - Provides broad introduction to, and examples of, various types of stem cells, core concepts of regenerative medicine, biomaterials, nanotechnology and nanomaterials, somatic cell transdyferentiation, and more - Edited and authored by researchers with expertise in regenerative medicine, (cancer) stem cells, biomaterials, genetics and nanomaterials
Publisher: Academic Press
ISBN: 0128122781
Category : Science
Languages : en
Pages : 252
Book Description
Stem Cells and Biomaterials for Regenerative Medicine addresses the urgent need for a compact source of information on both the cellular and biomaterial aspects of regenerative medicine. By developing a mutual understanding between three separately functioning areas of science—medicine, the latest technology, and clinical economics—the volume encourages interdisciplinary relationships that will lead to solutions for the significant challenges faced by today's regenerative medicine. Users will find sections on the homeostatic balance created by apoptosis and proliferating tissue stem cells, the naturally regenerative capacities of various tissue types, the potential regenerative benefits of iPS-generation, various differentiation protocols, and more. Written in easily accessbile language, this volume is appropriate for any professional or medical staff looking to expand their knowledge with regard to stem cells and regenerative medicine. - Arms readers with key information on tissue engineering, artificial organs and biomaterials, while using broadly accessible language - Provides broad introduction to, and examples of, various types of stem cells, core concepts of regenerative medicine, biomaterials, nanotechnology and nanomaterials, somatic cell transdyferentiation, and more - Edited and authored by researchers with expertise in regenerative medicine, (cancer) stem cells, biomaterials, genetics and nanomaterials
Organ Manufacturing
Author: Xiaohong Wang
Publisher: Nova Science Publishers
ISBN: 9781634829571
Category : Artificial organs
Languages : en
Pages : 0
Book Description
This is the first time that human organs, such as the heart, liver, kidney, stomach, uterus, skin, lung, pancreas and breast can be manufactured automatically and precisely for clinical transplantation, drug screening and metabolism model establishment. Headed by Professor Xiaohong Wang (also the founder and director) in the Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, this group has focused on organ manufacturing for over ten years. A series of technical bottleneck problems, such as vascular and nerve system establishment in a construct, multiple cell types and material system incorporation, and stem cell sequential engagement, have been overcome one by one. Two technical approaches have been exploited extensively. One is multiple nozzle rapid prototyping (RP), additive manufacturing (AM), or three-dimension (3D) printing. The other is combined mold systems. More than 110 articles and 40 patents with a series of theories and practices have been published consequently. In the future, all the failed organs (including the brain) in the human body can be substituted easily like a small accessory part in a car. Everyone can get benefit from these techniques, which ultimately means that the lifespan of humans, therefore, can be greatly prolonged from this time point. This book examines the progress made in the field and the developments made by these researchers (and authors) in the field.
Publisher: Nova Science Publishers
ISBN: 9781634829571
Category : Artificial organs
Languages : en
Pages : 0
Book Description
This is the first time that human organs, such as the heart, liver, kidney, stomach, uterus, skin, lung, pancreas and breast can be manufactured automatically and precisely for clinical transplantation, drug screening and metabolism model establishment. Headed by Professor Xiaohong Wang (also the founder and director) in the Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, this group has focused on organ manufacturing for over ten years. A series of technical bottleneck problems, such as vascular and nerve system establishment in a construct, multiple cell types and material system incorporation, and stem cell sequential engagement, have been overcome one by one. Two technical approaches have been exploited extensively. One is multiple nozzle rapid prototyping (RP), additive manufacturing (AM), or three-dimension (3D) printing. The other is combined mold systems. More than 110 articles and 40 patents with a series of theories and practices have been published consequently. In the future, all the failed organs (including the brain) in the human body can be substituted easily like a small accessory part in a car. Everyone can get benefit from these techniques, which ultimately means that the lifespan of humans, therefore, can be greatly prolonged from this time point. This book examines the progress made in the field and the developments made by these researchers (and authors) in the field.
Bioinspired Structures and Design
Author: Wole Soboyejo
Publisher: Cambridge University Press
ISBN: 1108963447
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bio-inspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers.
Publisher: Cambridge University Press
ISBN: 1108963447
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bio-inspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers.
Biomaterials Science
Author: Buddy D. Ratner
Publisher: Elsevier
ISBN: 008047036X
Category : Technology & Engineering
Languages : en
Pages : 879
Book Description
The second edition of this bestselling title provides the most up-to-date comprehensive review of all aspects of biomaterials science by providing a balanced, insightful approach to learning biomaterials. This reference integrates a historical perspective of materials engineering principles with biological interactions of biomaterials. Also provided within are regulatory and ethical issues in addition to future directions of the field, and a state-of-the-art update of medical and biotechnological applications. All aspects of biomaterials science are thoroughly addressed, from tissue engineering to cochlear prostheses and drug delivery systems. Over 80 contributors from academia, government and industry detail the principles of cell biology, immunology, and pathology. Focus within pertains to the clinical uses of biomaterials as components in implants, devices, and artificial organs. This reference also touches upon their uses in biotechnology as well as the characterization of the physical, chemical, biochemical and surface properties of these materials. - Provides comprehensive coverage of principles and applications of all classes of biomaterials - Integrates concepts of biomaterials science and biological interactions with clinical science and societal issues including law, regulation, and ethics - Discusses successes and failures of biomaterials applications in clinical medicine and the future directions of the field - Cover the broad spectrum of biomaterial compositions including polymers, metals, ceramics, glasses, carbons, natural materials, and composites - Endorsed by the Society for Biomaterials
Publisher: Elsevier
ISBN: 008047036X
Category : Technology & Engineering
Languages : en
Pages : 879
Book Description
The second edition of this bestselling title provides the most up-to-date comprehensive review of all aspects of biomaterials science by providing a balanced, insightful approach to learning biomaterials. This reference integrates a historical perspective of materials engineering principles with biological interactions of biomaterials. Also provided within are regulatory and ethical issues in addition to future directions of the field, and a state-of-the-art update of medical and biotechnological applications. All aspects of biomaterials science are thoroughly addressed, from tissue engineering to cochlear prostheses and drug delivery systems. Over 80 contributors from academia, government and industry detail the principles of cell biology, immunology, and pathology. Focus within pertains to the clinical uses of biomaterials as components in implants, devices, and artificial organs. This reference also touches upon their uses in biotechnology as well as the characterization of the physical, chemical, biochemical and surface properties of these materials. - Provides comprehensive coverage of principles and applications of all classes of biomaterials - Integrates concepts of biomaterials science and biological interactions with clinical science and societal issues including law, regulation, and ethics - Discusses successes and failures of biomaterials applications in clinical medicine and the future directions of the field - Cover the broad spectrum of biomaterial compositions including polymers, metals, ceramics, glasses, carbons, natural materials, and composites - Endorsed by the Society for Biomaterials
Design of Artificial Human Joints & Organs
Author: Subrata Pal
Publisher: Springer Science & Business Media
ISBN: 146146255X
Category : Technology & Engineering
Languages : en
Pages : 429
Book Description
Design of Artificial Human Joints & Organs is intended to present the basics of the normal systems and how, due to aging, diseases or trauma, body parts may need to be replaced with manmade materials. The movement of the body generates forces in various work situations and also internally at various joints, muscles and ligaments. It is essential to figure out the forces, moments, pressure etc to design replacements that manage these stresses without breaking down. The mechanical characterization of the hard and the soft tissues are presented systematically using the principles of solid mechanics. The viscoelastic properties of the tissue will also discussed. This text covers the design science and methodology from concept to blueprint to the final component being replaced. Each chapter will be a brief overview of various joint/organ replacement systems. Engineers working on artificial joints and organs, as well as students of Mechanical Engineering and Biomedical Engineering are the main intended audience, however, the pedagogy is simple enough for those who are learning the subject for the first time.
Publisher: Springer Science & Business Media
ISBN: 146146255X
Category : Technology & Engineering
Languages : en
Pages : 429
Book Description
Design of Artificial Human Joints & Organs is intended to present the basics of the normal systems and how, due to aging, diseases or trauma, body parts may need to be replaced with manmade materials. The movement of the body generates forces in various work situations and also internally at various joints, muscles and ligaments. It is essential to figure out the forces, moments, pressure etc to design replacements that manage these stresses without breaking down. The mechanical characterization of the hard and the soft tissues are presented systematically using the principles of solid mechanics. The viscoelastic properties of the tissue will also discussed. This text covers the design science and methodology from concept to blueprint to the final component being replaced. Each chapter will be a brief overview of various joint/organ replacement systems. Engineers working on artificial joints and organs, as well as students of Mechanical Engineering and Biomedical Engineering are the main intended audience, however, the pedagogy is simple enough for those who are learning the subject for the first time.