Author: George A. Agoston
Publisher: Springer Science & Business Media
ISBN: 038709654X
Category : Art
Languages : en
Pages : 250
Book Description
“Look deep into nature and you will understand everything better.” advised Albert Einstein. In recent years, the research communities in Computer Science, Engineering, and other disciplines have taken this message to heart, and a relatively new field of “biologically-inspired computing” has been born. Inspiration is being drawn from nature, from the behaviors of colonies of ants, of swarms of bees and even the human body. This new paradigm in computing takes many simple autonomous objects or agents and lets them jointly perform a complex task, without having the need for centralized control. In this paradigm, these simple objects interact locally with their environment using simple rules. Applications include optimization algorithms, communications networks, scheduling and decision making, supply-chain management, and robotics, to name just a few. There are many disciplines involved in making such systems work: from artificial intelligence to energy aware systems. Often these disciplines have their own field of focus, have their own conferences, or only deal with specialized s- problems (e.g. swarm intelligence, biologically inspired computation, sensor networks). The Second IFIP Conference on Biologically-Inspired Collaborative Computing aims to bridge this separation of the scientific community and bring together researchers in the fields of Organic Computing, Autonomic Computing, Self-Organizing Systems, Pervasive Computing and related areas. We are very pleased to have two very important keynote presentations: Swarm Robotics: The Coordination of Robots via Swarm Intelligence Principles by Marco Dorigo (Université Libre de Bruxelles, Belgium), of which an abstract is included in this volume.
Biologically-Inspired Collaborative Computing
Author: George A. Agoston
Publisher: Springer Science & Business Media
ISBN: 038709654X
Category : Art
Languages : en
Pages : 250
Book Description
“Look deep into nature and you will understand everything better.” advised Albert Einstein. In recent years, the research communities in Computer Science, Engineering, and other disciplines have taken this message to heart, and a relatively new field of “biologically-inspired computing” has been born. Inspiration is being drawn from nature, from the behaviors of colonies of ants, of swarms of bees and even the human body. This new paradigm in computing takes many simple autonomous objects or agents and lets them jointly perform a complex task, without having the need for centralized control. In this paradigm, these simple objects interact locally with their environment using simple rules. Applications include optimization algorithms, communications networks, scheduling and decision making, supply-chain management, and robotics, to name just a few. There are many disciplines involved in making such systems work: from artificial intelligence to energy aware systems. Often these disciplines have their own field of focus, have their own conferences, or only deal with specialized s- problems (e.g. swarm intelligence, biologically inspired computation, sensor networks). The Second IFIP Conference on Biologically-Inspired Collaborative Computing aims to bridge this separation of the scientific community and bring together researchers in the fields of Organic Computing, Autonomic Computing, Self-Organizing Systems, Pervasive Computing and related areas. We are very pleased to have two very important keynote presentations: Swarm Robotics: The Coordination of Robots via Swarm Intelligence Principles by Marco Dorigo (Université Libre de Bruxelles, Belgium), of which an abstract is included in this volume.
Publisher: Springer Science & Business Media
ISBN: 038709654X
Category : Art
Languages : en
Pages : 250
Book Description
“Look deep into nature and you will understand everything better.” advised Albert Einstein. In recent years, the research communities in Computer Science, Engineering, and other disciplines have taken this message to heart, and a relatively new field of “biologically-inspired computing” has been born. Inspiration is being drawn from nature, from the behaviors of colonies of ants, of swarms of bees and even the human body. This new paradigm in computing takes many simple autonomous objects or agents and lets them jointly perform a complex task, without having the need for centralized control. In this paradigm, these simple objects interact locally with their environment using simple rules. Applications include optimization algorithms, communications networks, scheduling and decision making, supply-chain management, and robotics, to name just a few. There are many disciplines involved in making such systems work: from artificial intelligence to energy aware systems. Often these disciplines have their own field of focus, have their own conferences, or only deal with specialized s- problems (e.g. swarm intelligence, biologically inspired computation, sensor networks). The Second IFIP Conference on Biologically-Inspired Collaborative Computing aims to bridge this separation of the scientific community and bring together researchers in the fields of Organic Computing, Autonomic Computing, Self-Organizing Systems, Pervasive Computing and related areas. We are very pleased to have two very important keynote presentations: Swarm Robotics: The Coordination of Robots via Swarm Intelligence Principles by Marco Dorigo (Université Libre de Bruxelles, Belgium), of which an abstract is included in this volume.
Biologically-Inspired Collaborative Computing
Author: Mike Hinchey
Publisher: Springer
ISBN: 0387096558
Category : Computers
Languages : en
Pages : 250
Book Description
“Look deep into nature and you will understand everything better.” advised Albert Einstein. In recent years, the research communities in Computer Science, Engineering, and other disciplines have taken this message to heart, and a relatively new field of “biologically-inspired computing” has been born. Inspiration is being drawn from nature, from the behaviors of colonies of ants, of swarms of bees and even the human body. This new paradigm in computing takes many simple autonomous objects or agents and lets them jointly perform a complex task, without having the need for centralized control. In this paradigm, these simple objects interact locally with their environment using simple rules. Applications include optimization algorithms, communications networks, scheduling and decision making, supply-chain management, and robotics, to name just a few. There are many disciplines involved in making such systems work: from artificial intelligence to energy aware systems. Often these disciplines have their own field of focus, have their own conferences, or only deal with specialized s- problems (e.g. swarm intelligence, biologically inspired computation, sensor networks). The Second IFIP Conference on Biologically-Inspired Collaborative Computing aims to bridge this separation of the scientific community and bring together researchers in the fields of Organic Computing, Autonomic Computing, Self-Organizing Systems, Pervasive Computing and related areas. We are very pleased to have two very important keynote presentations: Swarm Robotics: The Coordination of Robots via Swarm Intelligence Principles by Marco Dorigo (Université Libre de Bruxelles, Belgium), of which an abstract is included in this volume.
Publisher: Springer
ISBN: 0387096558
Category : Computers
Languages : en
Pages : 250
Book Description
“Look deep into nature and you will understand everything better.” advised Albert Einstein. In recent years, the research communities in Computer Science, Engineering, and other disciplines have taken this message to heart, and a relatively new field of “biologically-inspired computing” has been born. Inspiration is being drawn from nature, from the behaviors of colonies of ants, of swarms of bees and even the human body. This new paradigm in computing takes many simple autonomous objects or agents and lets them jointly perform a complex task, without having the need for centralized control. In this paradigm, these simple objects interact locally with their environment using simple rules. Applications include optimization algorithms, communications networks, scheduling and decision making, supply-chain management, and robotics, to name just a few. There are many disciplines involved in making such systems work: from artificial intelligence to energy aware systems. Often these disciplines have their own field of focus, have their own conferences, or only deal with specialized s- problems (e.g. swarm intelligence, biologically inspired computation, sensor networks). The Second IFIP Conference on Biologically-Inspired Collaborative Computing aims to bridge this separation of the scientific community and bring together researchers in the fields of Organic Computing, Autonomic Computing, Self-Organizing Systems, Pervasive Computing and related areas. We are very pleased to have two very important keynote presentations: Swarm Robotics: The Coordination of Robots via Swarm Intelligence Principles by Marco Dorigo (Université Libre de Bruxelles, Belgium), of which an abstract is included in this volume.
Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing
Author: Simon James Fong
Publisher: Springer Nature
ISBN: 981156695X
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
This book aims to provide some insights into recently developed bio-inspired algorithms within recent emerging trends of fog computing, sentiment analysis, and data streaming as well as to provide a more comprehensive approach to the big data management from pre-processing to analytics to visualization phases. The subject area of this book is within the realm of computer science, notably algorithms (meta-heuristic and, more particularly, bio-inspired algorithms). Although application domains of these new algorithms may be mentioned, the scope of this book is not on the application of algorithms to specific or general domains but to provide an update on recent research trends for bio-inspired algorithms within a specific application domain or emerging area. These areas include data streaming, fog computing, and phases of big data management. One of the reasons for writing this book is that the bio-inspired approach does not receive much attention but shows considerable promise and diversity in terms of approach of many issues in big data and streaming. Some novel approaches of this book are the use of these algorithms to all phases of data management (not just a particular phase such as data mining or business intelligence as many books focus on); effective demonstration of the effectiveness of a selected algorithm within a chapter against comparative algorithms using the experimental method. Another novel approach is a brief overview and evaluation of traditional algorithms, both sequential and parallel, for use in data mining, in order to provide an overview of existing algorithms in use. This overview complements a further chapter on bio-inspired algorithms for data mining to enable readers to make a more suitable choice of algorithm for data mining within a particular context. In all chapters, references for further reading are provided, and in selected chapters, the author also include ideas for future research.
Publisher: Springer Nature
ISBN: 981156695X
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
This book aims to provide some insights into recently developed bio-inspired algorithms within recent emerging trends of fog computing, sentiment analysis, and data streaming as well as to provide a more comprehensive approach to the big data management from pre-processing to analytics to visualization phases. The subject area of this book is within the realm of computer science, notably algorithms (meta-heuristic and, more particularly, bio-inspired algorithms). Although application domains of these new algorithms may be mentioned, the scope of this book is not on the application of algorithms to specific or general domains but to provide an update on recent research trends for bio-inspired algorithms within a specific application domain or emerging area. These areas include data streaming, fog computing, and phases of big data management. One of the reasons for writing this book is that the bio-inspired approach does not receive much attention but shows considerable promise and diversity in terms of approach of many issues in big data and streaming. Some novel approaches of this book are the use of these algorithms to all phases of data management (not just a particular phase such as data mining or business intelligence as many books focus on); effective demonstration of the effectiveness of a selected algorithm within a chapter against comparative algorithms using the experimental method. Another novel approach is a brief overview and evaluation of traditional algorithms, both sequential and parallel, for use in data mining, in order to provide an overview of existing algorithms in use. This overview complements a further chapter on bio-inspired algorithms for data mining to enable readers to make a more suitable choice of algorithm for data mining within a particular context. In all chapters, references for further reading are provided, and in selected chapters, the author also include ideas for future research.
Biologically-Inspired Collaborative Computing
Author: Mike Hinchey
Publisher: Springer
ISBN: 9781441935021
Category : Computers
Languages : en
Pages : 0
Book Description
“Look deep into nature and you will understand everything better.” advised Albert Einstein. In recent years, the research communities in Computer Science, Engineering, and other disciplines have taken this message to heart, and a relatively new field of “biologically-inspired computing” has been born. Inspiration is being drawn from nature, from the behaviors of colonies of ants, of swarms of bees and even the human body. This new paradigm in computing takes many simple autonomous objects or agents and lets them jointly perform a complex task, without having the need for centralized control. In this paradigm, these simple objects interact locally with their environment using simple rules. Applications include optimization algorithms, communications networks, scheduling and decision making, supply-chain management, and robotics, to name just a few. There are many disciplines involved in making such systems work: from artificial intelligence to energy aware systems. Often these disciplines have their own field of focus, have their own conferences, or only deal with specialized s- problems (e.g. swarm intelligence, biologically inspired computation, sensor networks). The Second IFIP Conference on Biologically-Inspired Collaborative Computing aims to bridge this separation of the scientific community and bring together researchers in the fields of Organic Computing, Autonomic Computing, Self-Organizing Systems, Pervasive Computing and related areas. We are very pleased to have two very important keynote presentations: Swarm Robotics: The Coordination of Robots via Swarm Intelligence Principles by Marco Dorigo (Université Libre de Bruxelles, Belgium), of which an abstract is included in this volume.
Publisher: Springer
ISBN: 9781441935021
Category : Computers
Languages : en
Pages : 0
Book Description
“Look deep into nature and you will understand everything better.” advised Albert Einstein. In recent years, the research communities in Computer Science, Engineering, and other disciplines have taken this message to heart, and a relatively new field of “biologically-inspired computing” has been born. Inspiration is being drawn from nature, from the behaviors of colonies of ants, of swarms of bees and even the human body. This new paradigm in computing takes many simple autonomous objects or agents and lets them jointly perform a complex task, without having the need for centralized control. In this paradigm, these simple objects interact locally with their environment using simple rules. Applications include optimization algorithms, communications networks, scheduling and decision making, supply-chain management, and robotics, to name just a few. There are many disciplines involved in making such systems work: from artificial intelligence to energy aware systems. Often these disciplines have their own field of focus, have their own conferences, or only deal with specialized s- problems (e.g. swarm intelligence, biologically inspired computation, sensor networks). The Second IFIP Conference on Biologically-Inspired Collaborative Computing aims to bridge this separation of the scientific community and bring together researchers in the fields of Organic Computing, Autonomic Computing, Self-Organizing Systems, Pervasive Computing and related areas. We are very pleased to have two very important keynote presentations: Swarm Robotics: The Coordination of Robots via Swarm Intelligence Principles by Marco Dorigo (Université Libre de Bruxelles, Belgium), of which an abstract is included in this volume.
The British National Bibliography
Author: Arthur James Wells
Publisher:
ISBN:
Category : Bibliography, National
Languages : en
Pages : 1922
Book Description
Publisher:
ISBN:
Category : Bibliography, National
Languages : en
Pages : 1922
Book Description
Biologically Inspired Design
Author: Ashok K Goel
Publisher: Springer Science & Business Media
ISBN: 1447152484
Category : Technology & Engineering
Languages : en
Pages : 333
Book Description
From simple cases such as hook and latch attachments found in Velcro to articulated-wing flying vehicles, biology often has been used to inspire many creative design ideas. The scientific challenge now is to transform the paradigm into a repeatable and scalable methodology. Biologically Inspired Design explores computational techniques and tools that can help integrate the method into design practice. With an inspiring foreword from Janine Benyus, Biologically Inspired Design contains a dozen chapters written by some of the leading scholars in the transdisciplinary field of bioinspired design, such as Frank Fish, Julian Vincent and Jeannette Yen from biology, and Amaresk Chakrabarti, Satyandra Gupta and Li Shu from engineering. Based in part on discussions at two workshops sponsored by the United States National Science Foundation, this volume introduces and develops several methods and tools for bioinspired design including: Information-processing theories, Natural language techniques, Knowledge-based tools, and Functional approaches and Pedagogical techniques. By exploring these fundamental theories, techniques and tools for supporting biologically inspired design, this volume provides a comprehensive resource for design practitioners wishing to explore the paradigm, an invaluable guide to design educators interested in teaching the method, and a preliminary reading for design researchers wanting to investigate bioinspired design.
Publisher: Springer Science & Business Media
ISBN: 1447152484
Category : Technology & Engineering
Languages : en
Pages : 333
Book Description
From simple cases such as hook and latch attachments found in Velcro to articulated-wing flying vehicles, biology often has been used to inspire many creative design ideas. The scientific challenge now is to transform the paradigm into a repeatable and scalable methodology. Biologically Inspired Design explores computational techniques and tools that can help integrate the method into design practice. With an inspiring foreword from Janine Benyus, Biologically Inspired Design contains a dozen chapters written by some of the leading scholars in the transdisciplinary field of bioinspired design, such as Frank Fish, Julian Vincent and Jeannette Yen from biology, and Amaresk Chakrabarti, Satyandra Gupta and Li Shu from engineering. Based in part on discussions at two workshops sponsored by the United States National Science Foundation, this volume introduces and develops several methods and tools for bioinspired design including: Information-processing theories, Natural language techniques, Knowledge-based tools, and Functional approaches and Pedagogical techniques. By exploring these fundamental theories, techniques and tools for supporting biologically inspired design, this volume provides a comprehensive resource for design practitioners wishing to explore the paradigm, an invaluable guide to design educators interested in teaching the method, and a preliminary reading for design researchers wanting to investigate bioinspired design.
AMSTAT News
Author: American Statistical Association
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 460
Book Description
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 460
Book Description
Library & Information Science Abstracts
Author:
Publisher:
ISBN:
Category : Information science
Languages : en
Pages : 728
Book Description
Publisher:
ISBN:
Category : Information science
Languages : en
Pages : 728
Book Description
Bio-Inspired Computational Algorithms and Their Applications
Author: Shangce Gao
Publisher: BoD – Books on Demand
ISBN: 9535102141
Category : Computers
Languages : en
Pages : 436
Book Description
Bio-inspired computational algorithms are always hot research topics in artificial intelligence communities. Biology is a bewildering source of inspiration for the design of intelligent artifacts that are capable of efficient and autonomous operation in unknown and changing environments. It is difficult to resist the fascination of creating artifacts that display elements of lifelike intelligence, thus needing techniques for control, optimization, prediction, security, design, and so on. Bio-Inspired Computational Algorithms and Their Applications is a compendium that addresses this need. It integrates contrasting techniques of genetic algorithms, artificial immune systems, particle swarm optimization, and hybrid models to solve many real-world problems. The works presented in this book give insights into the creation of innovative improvements over algorithm performance, potential applications on various practical tasks, and combination of different techniques. The book provides a reference to researchers, practitioners, and students in both artificial intelligence and engineering communities, forming a foundation for the development of the field.
Publisher: BoD – Books on Demand
ISBN: 9535102141
Category : Computers
Languages : en
Pages : 436
Book Description
Bio-inspired computational algorithms are always hot research topics in artificial intelligence communities. Biology is a bewildering source of inspiration for the design of intelligent artifacts that are capable of efficient and autonomous operation in unknown and changing environments. It is difficult to resist the fascination of creating artifacts that display elements of lifelike intelligence, thus needing techniques for control, optimization, prediction, security, design, and so on. Bio-Inspired Computational Algorithms and Their Applications is a compendium that addresses this need. It integrates contrasting techniques of genetic algorithms, artificial immune systems, particle swarm optimization, and hybrid models to solve many real-world problems. The works presented in this book give insights into the creation of innovative improvements over algorithm performance, potential applications on various practical tasks, and combination of different techniques. The book provides a reference to researchers, practitioners, and students in both artificial intelligence and engineering communities, forming a foundation for the development of the field.
Regenesis
Author: George M Church
Publisher: Basic Books
ISBN: 0465038654
Category : Science
Languages : en
Pages : 305
Book Description
A Harvard biologist and master inventor explores how new biotechnologies will enable us to bring species back from the dead, unlock vast supplies of renewable energy, and extend human life. In Regenesis, George Church and science writer Ed Regis explore the possibilities of the emerging field of synthetic biology. Synthetic biology, in which living organisms are selectively altered by modifying substantial portions of their genomes, allows for the creation of entirely new species of organisms. These technologies-far from the out-of-control nightmare depicted in science fiction-have the power to improve human and animal health, increase our intelligence, enhance our memory, and even extend our life span. A breathtaking look at the potential of this world-changing technology, Regenesis is nothing less than a guide to the future of life.
Publisher: Basic Books
ISBN: 0465038654
Category : Science
Languages : en
Pages : 305
Book Description
A Harvard biologist and master inventor explores how new biotechnologies will enable us to bring species back from the dead, unlock vast supplies of renewable energy, and extend human life. In Regenesis, George Church and science writer Ed Regis explore the possibilities of the emerging field of synthetic biology. Synthetic biology, in which living organisms are selectively altered by modifying substantial portions of their genomes, allows for the creation of entirely new species of organisms. These technologies-far from the out-of-control nightmare depicted in science fiction-have the power to improve human and animal health, increase our intelligence, enhance our memory, and even extend our life span. A breathtaking look at the potential of this world-changing technology, Regenesis is nothing less than a guide to the future of life.