Author: Theodosios Pavlidis
Publisher: Elsevier
ISBN: 0323159826
Category : Science
Languages : en
Pages : 222
Book Description
Biological Oscillators: Their Mathematical Analysis introduces the main features of the dynamic properties of biological oscillators and the mathematical techniques necessary for their investigation. It is not a comprehensive description of all known biological oscillators, since this would require a much bigger volume as well as a different type of expertise. Instead certain classes of biological oscillators are described, and then only in as much detail as required for the study of their dynamics. The opening chapter reviews fundamental mathematical concepts and techniques which will be used in the remainder of the book. These include phase plane techniques; asymptotic techniques of Krylov, Bogoliubov, and Mitopolski; and the describing function. Subsequent chapters discuss examples of biological oscillators; phase shifts and phase response curves; the entrainment of oscillators by external inputs; the dynamics of circadian oscillators; effects of changing environment on the dynamics of biological oscillators; the features peculiar to populations of interacting oscillators; and biological phenomena attributable to populations of oscillators.
Biological Oscillators: Their Mathematical Analysis
Author: Theodosios Pavlidis
Publisher: Elsevier
ISBN: 0323159826
Category : Science
Languages : en
Pages : 222
Book Description
Biological Oscillators: Their Mathematical Analysis introduces the main features of the dynamic properties of biological oscillators and the mathematical techniques necessary for their investigation. It is not a comprehensive description of all known biological oscillators, since this would require a much bigger volume as well as a different type of expertise. Instead certain classes of biological oscillators are described, and then only in as much detail as required for the study of their dynamics. The opening chapter reviews fundamental mathematical concepts and techniques which will be used in the remainder of the book. These include phase plane techniques; asymptotic techniques of Krylov, Bogoliubov, and Mitopolski; and the describing function. Subsequent chapters discuss examples of biological oscillators; phase shifts and phase response curves; the entrainment of oscillators by external inputs; the dynamics of circadian oscillators; effects of changing environment on the dynamics of biological oscillators; the features peculiar to populations of interacting oscillators; and biological phenomena attributable to populations of oscillators.
Publisher: Elsevier
ISBN: 0323159826
Category : Science
Languages : en
Pages : 222
Book Description
Biological Oscillators: Their Mathematical Analysis introduces the main features of the dynamic properties of biological oscillators and the mathematical techniques necessary for their investigation. It is not a comprehensive description of all known biological oscillators, since this would require a much bigger volume as well as a different type of expertise. Instead certain classes of biological oscillators are described, and then only in as much detail as required for the study of their dynamics. The opening chapter reviews fundamental mathematical concepts and techniques which will be used in the remainder of the book. These include phase plane techniques; asymptotic techniques of Krylov, Bogoliubov, and Mitopolski; and the describing function. Subsequent chapters discuss examples of biological oscillators; phase shifts and phase response curves; the entrainment of oscillators by external inputs; the dynamics of circadian oscillators; effects of changing environment on the dynamics of biological oscillators; the features peculiar to populations of interacting oscillators; and biological phenomena attributable to populations of oscillators.
Biological Clocks, Rhythms, and Oscillations
Author: Daniel B. Forger
Publisher: MIT Press
ISBN: 0262552817
Category : Science
Languages : en
Pages : 369
Book Description
An introduction to the mathematical, computational, and analytical techniques used for modeling biological rhythms, presenting tools from many disciplines and example applications. All areas of biology and medicine contain rhythms, and these behaviors are best understood through mathematical tools and techniques. This book offers a survey of mathematical, computational, and analytical techniques used for modeling biological rhythms, gathering these methods for the first time in one volume. Drawing on material from such disciplines as mathematical biology, nonlinear dynamics, physics, statistics, and engineering, it presents practical advice and techniques for studying biological rhythms, with a common language. The chapters proceed with increasing mathematical abstraction. Part I, on models, highlights the implicit assumptions and common pitfalls of modeling, and is accessible to readers with basic knowledge of differential equations and linear algebra. Part II, on behaviors, focuses on simpler models, describing common properties of biological rhythms that range from the firing properties of squid giant axon to human circadian rhythms. Part III, on mathematical techniques, guides readers who have specific models or goals in mind. Sections on “frontiers” present the latest research; “theory” sections present interesting mathematical results using more accessible approaches than can be found elsewhere. Each chapter offers exercises. Commented MATLAB code is provided to help readers get practical experience. The book, by an expert in the field, can be used as a textbook for undergraduate courses in mathematical biology or graduate courses in modeling biological rhythms and as a reference for researchers.
Publisher: MIT Press
ISBN: 0262552817
Category : Science
Languages : en
Pages : 369
Book Description
An introduction to the mathematical, computational, and analytical techniques used for modeling biological rhythms, presenting tools from many disciplines and example applications. All areas of biology and medicine contain rhythms, and these behaviors are best understood through mathematical tools and techniques. This book offers a survey of mathematical, computational, and analytical techniques used for modeling biological rhythms, gathering these methods for the first time in one volume. Drawing on material from such disciplines as mathematical biology, nonlinear dynamics, physics, statistics, and engineering, it presents practical advice and techniques for studying biological rhythms, with a common language. The chapters proceed with increasing mathematical abstraction. Part I, on models, highlights the implicit assumptions and common pitfalls of modeling, and is accessible to readers with basic knowledge of differential equations and linear algebra. Part II, on behaviors, focuses on simpler models, describing common properties of biological rhythms that range from the firing properties of squid giant axon to human circadian rhythms. Part III, on mathematical techniques, guides readers who have specific models or goals in mind. Sections on “frontiers” present the latest research; “theory” sections present interesting mathematical results using more accessible approaches than can be found elsewhere. Each chapter offers exercises. Commented MATLAB code is provided to help readers get practical experience. The book, by an expert in the field, can be used as a textbook for undergraduate courses in mathematical biology or graduate courses in modeling biological rhythms and as a reference for researchers.
The Geometry of Biological Time
Author: Arthur T. Winfree
Publisher: Springer Science & Business Media
ISBN: 3662224925
Category : Mathematics
Languages : en
Pages : 543
Book Description
As 1 review these pages, the last of them written in Summer 1978, some retrospec tive thoughts come to mind which put the whole business into better perspective for me and might aid the prospective reader in choosing how to approach this volume. The most conspicuous thought in my mind at present is the diversity of wholly independent explorations that came upon phase singularities, in one guise or another, during the past decade. My efforts to gather the published literature during the last phases of actually writing a whole book about them were almost equally divided between libraries of Biology, Chemistry, Engineering, Mathematics, Medicine, and Physics. A lot of what 1 call "gathering " was done somewhat in anticipation in the form of cönjecture, query, and prediction based on analogy between developments in different fields. The consequence throughout 1979 was that our long-suffering publisher re peatedly had to replace such material by citation of unexpected flurries of papers giving substantive demonstration. 1 trust that the authors of these many excellent reports, and especially of those I only found too late, will forgive the brevity of allusion I feIt compelled to observe in these substitutions. A residue of loose ends is largely collected in the index under "QUERIES. " It is c1ear to me already that the materials I began to gather several years ago represented only the first flickering of what turns out to be a substantial conflagration.
Publisher: Springer Science & Business Media
ISBN: 3662224925
Category : Mathematics
Languages : en
Pages : 543
Book Description
As 1 review these pages, the last of them written in Summer 1978, some retrospec tive thoughts come to mind which put the whole business into better perspective for me and might aid the prospective reader in choosing how to approach this volume. The most conspicuous thought in my mind at present is the diversity of wholly independent explorations that came upon phase singularities, in one guise or another, during the past decade. My efforts to gather the published literature during the last phases of actually writing a whole book about them were almost equally divided between libraries of Biology, Chemistry, Engineering, Mathematics, Medicine, and Physics. A lot of what 1 call "gathering " was done somewhat in anticipation in the form of cönjecture, query, and prediction based on analogy between developments in different fields. The consequence throughout 1979 was that our long-suffering publisher re peatedly had to replace such material by citation of unexpected flurries of papers giving substantive demonstration. 1 trust that the authors of these many excellent reports, and especially of those I only found too late, will forgive the brevity of allusion I feIt compelled to observe in these substitutions. A residue of loose ends is largely collected in the index under "QUERIES. " It is c1ear to me already that the materials I began to gather several years ago represented only the first flickering of what turns out to be a substantial conflagration.
Mathematical Models in Molecular Cellular Biology
Author: Lee A. Segel
Publisher: CUP Archive
ISBN: 9780521229258
Category : Mathematics
Languages : en
Pages : 776
Book Description
Interest in theoretical biology is rapidly growing and this 1981 book attempts to make the theory more accessible to experimentalists. Its primary purpose is to demonstrate to experimental molecular and cellular biologists the possible usefulness of mathematical models. Biologists with a basic command of calculus should be able to learn from the book what assumptions are implied by various types of equations, to understand in broad outline a number of major theoretical concepts, and to be aware of some of the difficulties connected with analytical and numerical solutions of mathematical problems. Thus they should be able to appreciate the significance of theoretical papers in their fields and to communicate usefully with theoreticians in the course of their work.
Publisher: CUP Archive
ISBN: 9780521229258
Category : Mathematics
Languages : en
Pages : 776
Book Description
Interest in theoretical biology is rapidly growing and this 1981 book attempts to make the theory more accessible to experimentalists. Its primary purpose is to demonstrate to experimental molecular and cellular biologists the possible usefulness of mathematical models. Biologists with a basic command of calculus should be able to learn from the book what assumptions are implied by various types of equations, to understand in broad outline a number of major theoretical concepts, and to be aware of some of the difficulties connected with analytical and numerical solutions of mathematical problems. Thus they should be able to appreciate the significance of theoretical papers in their fields and to communicate usefully with theoreticians in the course of their work.
National Library of Medicine Current Catalog
Author: National Library of Medicine (U.S.)
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 1242
Book Description
First multi-year cumulation covers six years: 1965-70.
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 1242
Book Description
First multi-year cumulation covers six years: 1965-70.
An Introduction to the History of Chronobiology, Volume 3
Author: Jole Shackelford
Publisher: University of Pittsburgh Press
ISBN: 0822989050
Category : Science
Languages : en
Pages : 373
Book Description
In three volumes, historian Jole Shackelford delineates the history of the study of biological rhythms—now widely known as chronobiology—from antiquity into the twentieth century. Perhaps the most well-known biological rhythm is the circadian rhythm, tied to the cycles of day and night and often referred to as the “body clock.” But there are many other biological rhythms, and although scientists and the natural philosophers who preceded them have long known about them, only in the past thirty years have a handful of pioneering scientists begun to study such rhythms in plants and animals seriously. Tracing the intellectual and institutional development of biological rhythm studies, Shackelford offers a meaningful, evidence-based account of a field that today holds great promise for applications in agriculture, health care, and public health. Volume 1 follows early biological observations and research, chiefly on plants; volume 2 turns to animal and human rhythms and the disciplinary contexts for chronobiological investigation; and volume 3 focuses primarily on twentieth-century researchers who modeled biological clocks and sought them out, including three molecular biologists whose work in determining clock mechanisms earned them a Nobel Prize in 2017.
Publisher: University of Pittsburgh Press
ISBN: 0822989050
Category : Science
Languages : en
Pages : 373
Book Description
In three volumes, historian Jole Shackelford delineates the history of the study of biological rhythms—now widely known as chronobiology—from antiquity into the twentieth century. Perhaps the most well-known biological rhythm is the circadian rhythm, tied to the cycles of day and night and often referred to as the “body clock.” But there are many other biological rhythms, and although scientists and the natural philosophers who preceded them have long known about them, only in the past thirty years have a handful of pioneering scientists begun to study such rhythms in plants and animals seriously. Tracing the intellectual and institutional development of biological rhythm studies, Shackelford offers a meaningful, evidence-based account of a field that today holds great promise for applications in agriculture, health care, and public health. Volume 1 follows early biological observations and research, chiefly on plants; volume 2 turns to animal and human rhythms and the disciplinary contexts for chronobiological investigation; and volume 3 focuses primarily on twentieth-century researchers who modeled biological clocks and sought them out, including three molecular biologists whose work in determining clock mechanisms earned them a Nobel Prize in 2017.
Introduction to Mathematics for Life Scientists
Author: Edward Batschelet
Publisher: Springer Science & Business Media
ISBN: 3642618693
Category : Technology & Engineering
Languages : en
Pages : 700
Book Description
From the reviews: "...Here we have a book which we can wholeheartedly suggest. The mathematics is sound and pared to essentials; the examples are an impressive, well-chosen selection from the biomathematics literature, and the problem sets provide both useful exercises and some fine introductions to the art of modeling... Batschelet has written an introduction to biomathematics which is notable for its clarity - not only a clarity of presentation, but also a clarity of purpose, backed by a sure grasp of the field..." #Bulletin of Mathematical Biology#1 "For research workers in the biomedical field who feel a need for freshening up their knowledge in mathematics, but so far have always been frustrated by either too formal or too boring textbooks, there is now exactly what they would like to have: an easy to read introduction. This book is highly motivating for practical workers because only those mathematical techniques are offered for which there is an application in the life sciences. The reader will find it stimulating that each tool described is immediately exemplified by problems from latest publications." #Int. Zeitschrift für klinische Pharmakologie, Therapie und Toxikologie#2
Publisher: Springer Science & Business Media
ISBN: 3642618693
Category : Technology & Engineering
Languages : en
Pages : 700
Book Description
From the reviews: "...Here we have a book which we can wholeheartedly suggest. The mathematics is sound and pared to essentials; the examples are an impressive, well-chosen selection from the biomathematics literature, and the problem sets provide both useful exercises and some fine introductions to the art of modeling... Batschelet has written an introduction to biomathematics which is notable for its clarity - not only a clarity of presentation, but also a clarity of purpose, backed by a sure grasp of the field..." #Bulletin of Mathematical Biology#1 "For research workers in the biomedical field who feel a need for freshening up their knowledge in mathematics, but so far have always been frustrated by either too formal or too boring textbooks, there is now exactly what they would like to have: an easy to read introduction. This book is highly motivating for practical workers because only those mathematical techniques are offered for which there is an application in the life sciences. The reader will find it stimulating that each tool described is immediately exemplified by problems from latest publications." #Int. Zeitschrift für klinische Pharmakologie, Therapie und Toxikologie#2
Chemical Oscillations, Waves, and Turbulence
Author: Y. Kuramoto
Publisher: Springer Science & Business Media
ISBN: 3642696899
Category : Science
Languages : en
Pages : 165
Book Description
Tbis book is intended to provide a few asymptotic methods which can be applied to the dynamics of self-oscillating fields of the reaction-diffusion type and of some related systems. Such systems, forming cooperative fields of a large num of interacting similar subunits, are considered as typical synergetic systems. ber Because each local subunit itself represents an active dynamical system function ing only in far-from-equilibrium situations, the entire system is capable of showing a variety of curious pattern formations and turbulencelike behaviors quite unfamiliar in thermodynamic cooperative fields. I personally believe that the nonlinear dynamics, deterministic or statistical, of fields composed of similar active (Le., non-equilibrium) elements will form an extremely attractive branch of physics in the near future. For the study of non-equilibrium cooperative systems, some theoretical guid ing principle would be highly desirable. In this connection, this book pushes for ward a particular physical viewpoint based on the slaving principle. The dis covery of tbis principle in non-equilibrium phase transitions, especially in lasers, was due to Hermann Haken. The great utility of this concept will again be dem onstrated in tbis book for the fields of coupled nonlinear oscillators.
Publisher: Springer Science & Business Media
ISBN: 3642696899
Category : Science
Languages : en
Pages : 165
Book Description
Tbis book is intended to provide a few asymptotic methods which can be applied to the dynamics of self-oscillating fields of the reaction-diffusion type and of some related systems. Such systems, forming cooperative fields of a large num of interacting similar subunits, are considered as typical synergetic systems. ber Because each local subunit itself represents an active dynamical system function ing only in far-from-equilibrium situations, the entire system is capable of showing a variety of curious pattern formations and turbulencelike behaviors quite unfamiliar in thermodynamic cooperative fields. I personally believe that the nonlinear dynamics, deterministic or statistical, of fields composed of similar active (Le., non-equilibrium) elements will form an extremely attractive branch of physics in the near future. For the study of non-equilibrium cooperative systems, some theoretical guid ing principle would be highly desirable. In this connection, this book pushes for ward a particular physical viewpoint based on the slaving principle. The dis covery of tbis principle in non-equilibrium phase transitions, especially in lasers, was due to Hermann Haken. The great utility of this concept will again be dem onstrated in tbis book for the fields of coupled nonlinear oscillators.
Membranes and Circadian Rythms
Author: Jean-Luc Guisset
Publisher: Springer Science & Business Media
ISBN: 3642799035
Category : Medical
Languages : en
Pages : 235
Book Description
Rambling of an elderly biochemist Most biochemists of my generation, who were trying to discover the pathways of metabolism, simply ignored membranes; or regarded them as a nuisance. Think of the difficulties experienced in studies on cytochromoxidase which one could not separate from « insoluble material )} or again of the desperate efforts during a quarter of a century to unravel oxidative phosphorylation without paying much attention to lipidic membranes, altough the system was known to be associated with them. Hence the amazement and the general skepticism that met at first Mitchell's theory, which was giving membranes the central function they deserve in oxidative phosphorylation and photosynthesis. This, I believe, was a turning point; enzymologists thereafter became aware of the importance of the membranes. Neurophysiologists, of course, had long been interested in the outer cell membrane with its electrical properties and the ion potentials. Histologists and electronmicroscopists also, who observed inside the cell.organelles of which membranes are essential components: nucleus, nucleoli, mitchondria, lysosomes,Golgi apparatus, endoplasmic reticulum, chloroplasts. For them at least, a cell did not look like a mere bag full of enzymes and small molecules; they knew, they could see that it is a highly structured system divided into many compartments by membranous formations.
Publisher: Springer Science & Business Media
ISBN: 3642799035
Category : Medical
Languages : en
Pages : 235
Book Description
Rambling of an elderly biochemist Most biochemists of my generation, who were trying to discover the pathways of metabolism, simply ignored membranes; or regarded them as a nuisance. Think of the difficulties experienced in studies on cytochromoxidase which one could not separate from « insoluble material )} or again of the desperate efforts during a quarter of a century to unravel oxidative phosphorylation without paying much attention to lipidic membranes, altough the system was known to be associated with them. Hence the amazement and the general skepticism that met at first Mitchell's theory, which was giving membranes the central function they deserve in oxidative phosphorylation and photosynthesis. This, I believe, was a turning point; enzymologists thereafter became aware of the importance of the membranes. Neurophysiologists, of course, had long been interested in the outer cell membrane with its electrical properties and the ion potentials. Histologists and electronmicroscopists also, who observed inside the cell.organelles of which membranes are essential components: nucleus, nucleoli, mitchondria, lysosomes,Golgi apparatus, endoplasmic reticulum, chloroplasts. For them at least, a cell did not look like a mere bag full of enzymes and small molecules; they knew, they could see that it is a highly structured system divided into many compartments by membranous formations.
U.S. Environmental Protection Agency Library System Book Catalog
Author: United States. Environmental Protection Agency. Library Systems Branch
Publisher:
ISBN:
Category : Environmental protection
Languages : en
Pages : 490
Book Description
Publisher:
ISBN:
Category : Environmental protection
Languages : en
Pages : 490
Book Description