Author: Zheng Rong Yang
Publisher: World Scientific
ISBN: 981128735X
Category : Computers
Languages : en
Pages : 267
Book Description
Due to its capability of handling very complex problems and its high flexibility in adapting to different algorithms, the kernel machine plays a crucial role in machine learning.Bio-Kernel Machines and Applications will introduce a new type of kernel machine for the exploration and modeling between the genotypic inherent structures of short protein sequences or nucleic sequences and the phenotypic biological properties or functions of proteins or nucleotides.The book seeks to establish the fundamentals of the bio-kernel machines by presenting the basic principle and theory of the kernel machine and the various formats of kernel machines, such as string kernel machines adapted for biological applications. The book will also introduce several biological applications of the mutation matrices, demonstrating how mutation matrices can enhance the efficiency and biological relevance of machine learning models applied in specific biological problems.Through analyzing current applications of bio-kernel machines, readers will delve into the advantages of the bio-kernel machines and explore how bio-kernel machines can be further enhanced to tackle a wide spectrum of biological challenges and pave the way for future advancements.
Bio-kernel Machines And Applications
Author: Zheng Rong Yang
Publisher: World Scientific
ISBN: 981128735X
Category : Computers
Languages : en
Pages : 267
Book Description
Due to its capability of handling very complex problems and its high flexibility in adapting to different algorithms, the kernel machine plays a crucial role in machine learning.Bio-Kernel Machines and Applications will introduce a new type of kernel machine for the exploration and modeling between the genotypic inherent structures of short protein sequences or nucleic sequences and the phenotypic biological properties or functions of proteins or nucleotides.The book seeks to establish the fundamentals of the bio-kernel machines by presenting the basic principle and theory of the kernel machine and the various formats of kernel machines, such as string kernel machines adapted for biological applications. The book will also introduce several biological applications of the mutation matrices, demonstrating how mutation matrices can enhance the efficiency and biological relevance of machine learning models applied in specific biological problems.Through analyzing current applications of bio-kernel machines, readers will delve into the advantages of the bio-kernel machines and explore how bio-kernel machines can be further enhanced to tackle a wide spectrum of biological challenges and pave the way for future advancements.
Publisher: World Scientific
ISBN: 981128735X
Category : Computers
Languages : en
Pages : 267
Book Description
Due to its capability of handling very complex problems and its high flexibility in adapting to different algorithms, the kernel machine plays a crucial role in machine learning.Bio-Kernel Machines and Applications will introduce a new type of kernel machine for the exploration and modeling between the genotypic inherent structures of short protein sequences or nucleic sequences and the phenotypic biological properties or functions of proteins or nucleotides.The book seeks to establish the fundamentals of the bio-kernel machines by presenting the basic principle and theory of the kernel machine and the various formats of kernel machines, such as string kernel machines adapted for biological applications. The book will also introduce several biological applications of the mutation matrices, demonstrating how mutation matrices can enhance the efficiency and biological relevance of machine learning models applied in specific biological problems.Through analyzing current applications of bio-kernel machines, readers will delve into the advantages of the bio-kernel machines and explore how bio-kernel machines can be further enhanced to tackle a wide spectrum of biological challenges and pave the way for future advancements.
Kernel Methods in Computational Biology
Author: Bernhard Schölkopf
Publisher: MIT Press
ISBN: 9780262195096
Category : Computers
Languages : en
Pages : 428
Book Description
A detailed overview of current research in kernel methods and their application to computational biology.
Publisher: MIT Press
ISBN: 9780262195096
Category : Computers
Languages : en
Pages : 428
Book Description
A detailed overview of current research in kernel methods and their application to computational biology.
Encyclopedia of Bioinformatics and Computational Biology
Author:
Publisher: Elsevier
ISBN: 0128114320
Category : Medical
Languages : en
Pages : 3421
Book Description
Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Three Volume Set combines elements of computer science, information technology, mathematics, statistics and biotechnology, providing the methodology and in silico solutions to mine biological data and processes. The book covers Theory, Topics and Applications, with a special focus on Integrative –omics and Systems Biology. The theoretical, methodological underpinnings of BCB, including phylogeny are covered, as are more current areas of focus, such as translational bioinformatics, cheminformatics, and environmental informatics. Finally, Applications provide guidance for commonly asked questions. This major reference work spans basic and cutting-edge methodologies authored by leaders in the field, providing an invaluable resource for students, scientists, professionals in research institutes, and a broad swath of researchers in biotechnology and the biomedical and pharmaceutical industries. Brings together information from computer science, information technology, mathematics, statistics and biotechnology Written and reviewed by leading experts in the field, providing a unique and authoritative resource Focuses on the main theoretical and methodological concepts before expanding on specific topics and applications Includes interactive images, multimedia tools and crosslinking to further resources and databases
Publisher: Elsevier
ISBN: 0128114320
Category : Medical
Languages : en
Pages : 3421
Book Description
Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Three Volume Set combines elements of computer science, information technology, mathematics, statistics and biotechnology, providing the methodology and in silico solutions to mine biological data and processes. The book covers Theory, Topics and Applications, with a special focus on Integrative –omics and Systems Biology. The theoretical, methodological underpinnings of BCB, including phylogeny are covered, as are more current areas of focus, such as translational bioinformatics, cheminformatics, and environmental informatics. Finally, Applications provide guidance for commonly asked questions. This major reference work spans basic and cutting-edge methodologies authored by leaders in the field, providing an invaluable resource for students, scientists, professionals in research institutes, and a broad swath of researchers in biotechnology and the biomedical and pharmaceutical industries. Brings together information from computer science, information technology, mathematics, statistics and biotechnology Written and reviewed by leading experts in the field, providing a unique and authoritative resource Focuses on the main theoretical and methodological concepts before expanding on specific topics and applications Includes interactive images, multimedia tools and crosslinking to further resources and databases
Bio-Kernel Machine and Its Applications
Author: Zheng Rong Yang
Publisher: World Scientific Publishing Company
ISBN: 9789811287336
Category : Computers
Languages : en
Pages : 0
Book Description
Due to its capability of handling very complex problems and its high flexibility in adapting to different algorithms, the kernel machine plays a crucial role in machine learning.Bio-Kernel Machines and Applications will introduce a new type of kernel machine for the exploration and modeling between the genotypic inherent structures of short protein sequences or nucleic sequences and the phenotypic biological properties or functions of proteins or nucleotides.The book seeks to establish the fundamentals of the bio-kernel machines by presenting the basic principle and theory of the kernel machine and the various formats of kernel machines, such as string kernel machines adapted for biological applications. The book will also introduce several biological applications of the mutation matrices, demonstrating how mutation matrices can enhance the efficiency and biological relevance of machine learning models applied in specific biological problems.Through analyzing current applications of bio-kernel machines, readers will delve into the advantages of the bio-kernel machines and explore how bio-kernel machines can be further enhanced to tackle a wide spectrum of biological challenges and pave the way for future advancements.
Publisher: World Scientific Publishing Company
ISBN: 9789811287336
Category : Computers
Languages : en
Pages : 0
Book Description
Due to its capability of handling very complex problems and its high flexibility in adapting to different algorithms, the kernel machine plays a crucial role in machine learning.Bio-Kernel Machines and Applications will introduce a new type of kernel machine for the exploration and modeling between the genotypic inherent structures of short protein sequences or nucleic sequences and the phenotypic biological properties or functions of proteins or nucleotides.The book seeks to establish the fundamentals of the bio-kernel machines by presenting the basic principle and theory of the kernel machine and the various formats of kernel machines, such as string kernel machines adapted for biological applications. The book will also introduce several biological applications of the mutation matrices, demonstrating how mutation matrices can enhance the efficiency and biological relevance of machine learning models applied in specific biological problems.Through analyzing current applications of bio-kernel machines, readers will delve into the advantages of the bio-kernel machines and explore how bio-kernel machines can be further enhanced to tackle a wide spectrum of biological challenges and pave the way for future advancements.
Computational Science and Its Applications - ICCSA 2005
Author: Osvaldo Gervasi
Publisher: Springer
ISBN: 3540320458
Category : Computers
Languages : en
Pages : 1403
Book Description
The four volume set assembled following The 2005 International Conference on Computational Science and its Applications, ICCSA 2005, held in Suntec International Convention and Exhibition Centre, Singapore, from 9 May 2005 till 12 May 2005, represents the ?ne collection of 540 refereed papers selected from nearly 2,700 submissions. Computational Science has ?rmly established itself as a vital part of many scienti?c investigations, a?ecting researchers and practitioners in areas ranging from applications such as aerospace and automotive, to emerging technologies such as bioinformatics and nanotechnologies, to core disciplines such as ma- ematics, physics, and chemistry. Due to the shear size of many challenges in computational science, the use of supercomputing, parallel processing, and - phisticated algorithms is inevitable and becomes a part of fundamental t- oretical research as well as endeavors in emerging ?elds. Together, these far reaching scienti?c areas contribute to shape this Conference in the realms of state-of-the-art computational science research and applications, encompassing the facilitating theoretical foundations and the innovative applications of such results in other areas.
Publisher: Springer
ISBN: 3540320458
Category : Computers
Languages : en
Pages : 1403
Book Description
The four volume set assembled following The 2005 International Conference on Computational Science and its Applications, ICCSA 2005, held in Suntec International Convention and Exhibition Centre, Singapore, from 9 May 2005 till 12 May 2005, represents the ?ne collection of 540 refereed papers selected from nearly 2,700 submissions. Computational Science has ?rmly established itself as a vital part of many scienti?c investigations, a?ecting researchers and practitioners in areas ranging from applications such as aerospace and automotive, to emerging technologies such as bioinformatics and nanotechnologies, to core disciplines such as ma- ematics, physics, and chemistry. Due to the shear size of many challenges in computational science, the use of supercomputing, parallel processing, and - phisticated algorithms is inevitable and becomes a part of fundamental t- oretical research as well as endeavors in emerging ?elds. Together, these far reaching scienti?c areas contribute to shape this Conference in the realms of state-of-the-art computational science research and applications, encompassing the facilitating theoretical foundations and the innovative applications of such results in other areas.
Introduction to Machine Learning, fourth edition
Author: Ethem Alpaydin
Publisher: MIT Press
ISBN: 0262043793
Category : Computers
Languages : en
Pages : 709
Book Description
A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks. The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks. The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals.
Publisher: MIT Press
ISBN: 0262043793
Category : Computers
Languages : en
Pages : 709
Book Description
A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks. The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks. The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals.
Application of Computational Intelligence to Biology
Author: Ravi Bhramaramba
Publisher: Springer
ISBN: 9811003912
Category : Technology & Engineering
Languages : en
Pages : 107
Book Description
This book is a contribution of translational and allied research to the proceedings of the International Conference on Computational Intelligence and Soft Computing. It explains how various computational intelligence techniques can be applied to investigate various biological problems. It is a good read for Research Scholars, Engineers, Medical Doctors and Bioinformatics researchers.
Publisher: Springer
ISBN: 9811003912
Category : Technology & Engineering
Languages : en
Pages : 107
Book Description
This book is a contribution of translational and allied research to the proceedings of the International Conference on Computational Intelligence and Soft Computing. It explains how various computational intelligence techniques can be applied to investigate various biological problems. It is a good read for Research Scholars, Engineers, Medical Doctors and Bioinformatics researchers.
Bio-Inspired Models of Network, Information, and Computing Systems
Author: Junichi Suzuki
Publisher: Springer
ISBN: 3642326153
Category : Computers
Languages : en
Pages : 712
Book Description
This book constitutes the thoroughly refereed post-conference proceedings of the 5th International ICST Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2010) which was held in Boston, USA, in December 2010. The 78 revised full papers were carefully reviewed and selected from numerous submissions for inclusion in the proceedings. BIONETICS 2010 aimed to provide the understanding of the fundamental principles and design strategies in biological systems and leverage those understandings to build bio-inspired systems.
Publisher: Springer
ISBN: 3642326153
Category : Computers
Languages : en
Pages : 712
Book Description
This book constitutes the thoroughly refereed post-conference proceedings of the 5th International ICST Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2010) which was held in Boston, USA, in December 2010. The 78 revised full papers were carefully reviewed and selected from numerous submissions for inclusion in the proceedings. BIONETICS 2010 aimed to provide the understanding of the fundamental principles and design strategies in biological systems and leverage those understandings to build bio-inspired systems.
Machine Learning Algorithms for Data Scientists: An Overview
Author: Vinaitheerthan Renganathan
Publisher: Vinaitheerthan Renganathan
ISBN: 9354737692
Category : Computers
Languages : en
Pages : 102
Book Description
Machine Learning models are widely used in different fields such as Artificial Intelligence, Business, Clinical and Biological Sciences which includes self-driving cars, predictive models, disease prediction, genome sequencing, spam filtering, product recommendation, fraud detection and image recognition . It has gained importance due to its capabilities of handling large volume of data, prediction and classification accuracy and validation procedures. Machine Learning models are built on the basis of statistical and mathematical algorithms. One important aspect of machine learning is it does not stick to standard algorithm throughout modeling process instead it learns from the data over a period of time and improves the accuracy of the model. Classification and prediction tasks are carried out based on the characteristics, patterns and relationship of the features present in the data set. Machine learning model also forms the basis of Deep Learning models. Machine Learning models involve supervised learning, unsupervised learning, semi supervised learning and reinforcement learning algorithms. Data Scientists analyze, model and visualize data and provide actionable insights to the decision makers. Machine learning algorithms and tools help the data scientist to carry out these tasks with the help of software such R and Python. This book provides an overview of Machine Learning models, algorithms and its application in different fields through the use of R Software. It also provides short introduction to R software for the benefit of users. Author assumes the users have basic descriptive and inferential statistical knowledge which is essential for building Machine Learning models. Data sets used in the books can be downloaded from the author’s website.
Publisher: Vinaitheerthan Renganathan
ISBN: 9354737692
Category : Computers
Languages : en
Pages : 102
Book Description
Machine Learning models are widely used in different fields such as Artificial Intelligence, Business, Clinical and Biological Sciences which includes self-driving cars, predictive models, disease prediction, genome sequencing, spam filtering, product recommendation, fraud detection and image recognition . It has gained importance due to its capabilities of handling large volume of data, prediction and classification accuracy and validation procedures. Machine Learning models are built on the basis of statistical and mathematical algorithms. One important aspect of machine learning is it does not stick to standard algorithm throughout modeling process instead it learns from the data over a period of time and improves the accuracy of the model. Classification and prediction tasks are carried out based on the characteristics, patterns and relationship of the features present in the data set. Machine learning model also forms the basis of Deep Learning models. Machine Learning models involve supervised learning, unsupervised learning, semi supervised learning and reinforcement learning algorithms. Data Scientists analyze, model and visualize data and provide actionable insights to the decision makers. Machine learning algorithms and tools help the data scientist to carry out these tasks with the help of software such R and Python. This book provides an overview of Machine Learning models, algorithms and its application in different fields through the use of R Software. It also provides short introduction to R software for the benefit of users. Author assumes the users have basic descriptive and inferential statistical knowledge which is essential for building Machine Learning models. Data sets used in the books can be downloaded from the author’s website.
Data Mining and Mathematical Programming
Author: Panos M. Pardalos
Publisher: American Mathematical Soc.
ISBN: 9780821870402
Category : Computers
Languages : en
Pages : 252
Book Description
Data mining aims at finding interesting, useful or profitable information in very large databases. The enormous increase in the size of available scientific and commercial databases (data avalanche) as well as the continuing and exponential growth in performance of present day computers make data mining a very active field. In many cases, the burgeoning volume of data sets has grown so large that it threatens to overwhelm rather than enlighten scientists. Therefore, traditional methods are revised and streamlined, complemented by many new methods to address challenging new problems. Mathematical Programming plays a key role in this endeavor. It helps us to formulate precise objectives (e.g., a clustering criterion or a measure of discrimination) as well as the constraints imposed on the solution (e.g., find a partition, a covering or a hierarchy in clustering). It also provides powerful mathematical tools to build highly performing exact or approximate algorithms. This book is based on lectures presented at the workshop on "Data Mining and Mathematical Programming" (October 10-13, 2006, Montreal) and will be a valuable scientific source of information to faculty, students, and researchers in optimization, data analysis and data mining, as well as people working in computer science, engineering and applied mathematics.
Publisher: American Mathematical Soc.
ISBN: 9780821870402
Category : Computers
Languages : en
Pages : 252
Book Description
Data mining aims at finding interesting, useful or profitable information in very large databases. The enormous increase in the size of available scientific and commercial databases (data avalanche) as well as the continuing and exponential growth in performance of present day computers make data mining a very active field. In many cases, the burgeoning volume of data sets has grown so large that it threatens to overwhelm rather than enlighten scientists. Therefore, traditional methods are revised and streamlined, complemented by many new methods to address challenging new problems. Mathematical Programming plays a key role in this endeavor. It helps us to formulate precise objectives (e.g., a clustering criterion or a measure of discrimination) as well as the constraints imposed on the solution (e.g., find a partition, a covering or a hierarchy in clustering). It also provides powerful mathematical tools to build highly performing exact or approximate algorithms. This book is based on lectures presented at the workshop on "Data Mining and Mathematical Programming" (October 10-13, 2006, Montreal) and will be a valuable scientific source of information to faculty, students, and researchers in optimization, data analysis and data mining, as well as people working in computer science, engineering and applied mathematics.