Bio-Based Plastics

Bio-Based Plastics PDF Author: Stephan Kabasci
Publisher: John Wiley & Sons
ISBN: 1118676734
Category : Technology & Engineering
Languages : en
Pages : 396

Get Book

Book Description
The field of bio-based plastics has developed significantly in the last 10 years and there is increasing pressure on industries to shift existing materials production from petrochemicals to renewables. Bio-based Plastics presents an up-to-date overview of the basic and applied aspects of bioplastics, focusing primarily on thermoplastic polymers for material use. Emphasizing materials currently in use or with significant potential for future applications, this book looks at the most important biopolymer classes such as polysaccharides, lignin, proteins and polyhydroxyalkanoates as raw materials for bio-based plastics, as well as materials derived from bio-based monomers like lipids, poly(lactic acid), polyesters, polyamides and polyolefines. Detailed consideration is also given to the market and availability of renewable raw materials, the importance of bio-based content and the aspect of biodegradability. Topics covered include: Starch Cellulose and cellulose acetate Materials based on chitin and chitosan Lignin matrix composites from natural resources Polyhydroxyalkanoates Poly(lactic acid) Polyesters, Polyamides and Polyolefins from biomass derived monomers Protein-based plastics Bio-based Plastics is a valuable resource for academic and industrial researchers who are interested in new materials, renewable resources, sustainability and polymerization technology. It will also prove useful for advanced students interested in the development of bio-based products and materials, green and sustainable chemistry, polymer chemistry and materials science. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs

Bio-Based Plastics

Bio-Based Plastics PDF Author: Stephan Kabasci
Publisher: John Wiley & Sons
ISBN: 1118676734
Category : Technology & Engineering
Languages : en
Pages : 396

Get Book

Book Description
The field of bio-based plastics has developed significantly in the last 10 years and there is increasing pressure on industries to shift existing materials production from petrochemicals to renewables. Bio-based Plastics presents an up-to-date overview of the basic and applied aspects of bioplastics, focusing primarily on thermoplastic polymers for material use. Emphasizing materials currently in use or with significant potential for future applications, this book looks at the most important biopolymer classes such as polysaccharides, lignin, proteins and polyhydroxyalkanoates as raw materials for bio-based plastics, as well as materials derived from bio-based monomers like lipids, poly(lactic acid), polyesters, polyamides and polyolefines. Detailed consideration is also given to the market and availability of renewable raw materials, the importance of bio-based content and the aspect of biodegradability. Topics covered include: Starch Cellulose and cellulose acetate Materials based on chitin and chitosan Lignin matrix composites from natural resources Polyhydroxyalkanoates Poly(lactic acid) Polyesters, Polyamides and Polyolefins from biomass derived monomers Protein-based plastics Bio-based Plastics is a valuable resource for academic and industrial researchers who are interested in new materials, renewable resources, sustainability and polymerization technology. It will also prove useful for advanced students interested in the development of bio-based products and materials, green and sustainable chemistry, polymer chemistry and materials science. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs

Bioplastics

Bioplastics PDF Author: Michael Thielen
Publisher:
ISBN: 9783981498141
Category :
Languages : en
Pages :

Get Book

Book Description


Bio-Based Polymers and Composites

Bio-Based Polymers and Composites PDF Author: Richard Wool
Publisher: Elsevier
ISBN: 9780080454344
Category : Technology & Engineering
Languages : en
Pages : 640

Get Book

Book Description
Bio-Based Polymers and Composites is the first book systematically describing the green engineering, chemistry and manufacture of biobased polymers and composites derived from plants. This book gives a thorough introduction to bio-based material resources, availability, sustainability, biobased polymer formation, extraction and refining technologies, and the need for integrated research and multi-disciplinary working teams. It provides an in-depth description of adhesives, resins, plastics, and composites derived from plant oils, proteins, starches, and natural fibers in terms of structures, properties, manufacturing, and product performance. This is an excellent book for scientists, engineers, graduate students and industrial researchers in the field of bio-based materials. * First book describing the utilization of crops to make high performance plastics, adhesives, and composites * Interdisciplinary approach to the subject, integrating genetic engineering, plant science, food science, chemistry, physics, nano-technology, and composite manufacturing. * Explains how to make green materials at low cost from soyoil, proteins, starch, natural fibers, recycled newspapers, chicken feathers and waste agricultural by-products.

Biobased Polymers

Biobased Polymers PDF Author: Pratima Bajpai
Publisher: Elsevier
ISBN: 0128184051
Category : Technology & Engineering
Languages : en
Pages : 250

Get Book

Book Description
Biobased Polymers: Properties and Applications in Packaging looks at how biopolymers may be used in packaging as a potential green solution. The book addresses bio-based feedstocks, production processes, packaging types, recent trends in packaging, the environmental impact of bio-based polymers, and legislative demands for food contact packaging materials. Chapters explore opportunities for biopolymers in key end-use sectors, the penetration of biopolymer based concepts in the packaging market, and barriers to widespread commercialization. As the development of bio-based material is an important factor for sustainably growing the packaging industry, these recent trends in consumer markets are extremely important as we move towards greener packaging. Hence, this resource is an invaluable addition on the topic. Offers a comprehensive introduction to the subject for researchers interested in bio-based products, green and sustainable chemistry, polymer chemistry and materials science Covers the market for bio-based materials Includes discussions on legislative demands for food contact packaging materials Describes interesting new technologies, including nanotechnology approaches

Introduction to Bioplastics Engineering

Introduction to Bioplastics Engineering PDF Author: Syed Ali Ashter
Publisher: William Andrew
ISBN: 0323394078
Category : Technology & Engineering
Languages : en
Pages : 300

Get Book

Book Description
Introduction to Bioplastics Engineering is a practical, user-friendly reference for plastics engineers working with biopolymers and biodegradable plastics that addresses topics that are required for the successful development of cohesive bioplastic products. While there has been considerable demand for the use of bioplastics in industry, processing these bioplastics is a big challenge. The book provides plastics engineers and researchers with a fundamental, practical understanding of the differences between bioplastics and biodegradable polymers, along with guidance on the different methods used to process bioplastics. The book also covers additives and modifiers for biopolymers and their effect on properties. Examples include commercial applications of bioplastics, current bioplastics being developed, and future trends in the industry. This enables engineers, researchers, technicians, and students to understand the decisive relationship between different processing techniques, morphology, mechanical properties, and the further applications of bio-based polymers. The book presents a true engineering approach for the industry on the processing of biopolymers and biodegradable plastics – discussing the ease of use of the polymer, mechanical and thermal properties, rate of biodegradation in particular environments, and pros and cons of particular bioplastics. Enables engineers, researchers, technicians, and students to understand the decisive relationship between different processing techniques, morphology, mechanical properties, and the further applications of bio-based polymers. Covers additives and modifiers for biopolymers and their effect on properties Includes examples that illustrate the commercial applications of bioplastics, current bioplastics being developed, and future trends in the industry

Bioplastics for Sustainable Development

Bioplastics for Sustainable Development PDF Author: Mohammed Kuddus
Publisher: Springer Nature
ISBN: 9811618232
Category : Science
Languages : en
Pages : 733

Get Book

Book Description
This book provides the latest information on bioplastics and biodegradable plastics. The initial chapters introduce readers to the various sources and substrates for the synthesis of bioplastics and biodegradable plastics, and explain their general structure, physio-chemical properties and classification. In turn, the book discusses innovative methods for the production of bioplastics at the industrial level and for the microbial production of bioplastics. It highlights the processes that are involved in the conversion of agro-industrial waste into bioplastics, while also summarizing the mechanisms of biodegradation in bioplastics. The book addresses a range of biotechnological applications of bioplastics such as in agriculture, food packaging and pharmaceutical industry, as well as biomedical applications.

Bio-Based Packaging

Bio-Based Packaging PDF Author: Salit Mohd Sapuan
Publisher: John Wiley & Sons
ISBN: 111938107X
Category : Science
Languages : en
Pages : 548

Get Book

Book Description
Bio-Based Packaging Bio-Based Packaging An authoritative and up-to-date review of sustainable packaging development and applications Bio-Based Packaging explores using renewable and biodegradable materials as sustainable alternatives to non-renewable, petroleum-based packaging. This comprehensive volume surveys the properties of biopolymers, the environmental and economic impact of bio-based packaging, and new and emerging technologies that are increasing the number of potential applications of green materials in the packaging industry. Contributions address the advantages and challenges of bio-based packaging, discuss new materials to be used for food packaging, and highlight cutting-edge research on polymers such as starch, protein, polylactic acid (PLA), pectin, nanocellulose, and their nanocomposites. In-depth yet accessible chapters provide balanced coverage of a broad range of practical topics, including life cycle assessment (LCA) of bio-based packaging products, consumer perceptions and preferences, supply chains, business strategies and markets in biodegradable food packaging, manufacturing of bio-based packaging materials, and regulations for food packaging materials. Detailed discussions provide valuable insight into the opportunities for biopolymers in end-use sectors, the barriers to biopolymer-based concepts in the packaging market, recent advances made in the field of biopolymeric composite materials, the future of bio-plastics in commercial food packaging, and more. This book: Provides deep coverage of the bio-based packaging development, characterization, regulations and environmental and socio-economic impact Contains real-world case studies of bio-based packaging applications Includes an overview of recent advances and emerging aspects of nanotechnology for development of sustainable composites for packaging Discusses renewable sources for packaging material and the reuse and recycling of bio-based packaging products Bio-Based Packaging is essential reading for academics, researchers, and industry professionals working in packaging materials, renewable resources, sustainability, polymerization technology, food technology, material engineering, and related fields. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs

Plastic Waste and Recycling

Plastic Waste and Recycling PDF Author: Trevor M. Letcher
Publisher: Academic Press
ISBN: 0128178817
Category : Science
Languages : en
Pages : 686

Get Book

Book Description
Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions begins with an introduction to the different types of plastic materials, their uses, and the concepts of reduce, reuse and recycle before examining plastic types, chemistry and degradation patterns that are organized by non-degradable plastic, degradable and biodegradable plastics, biopolymers and bioplastics. Other sections cover current challenges relating to plastic waste, explain the sources of waste and their routes into the environment, and provide systematic coverage of plastic waste treatment methods, including mechanical processing, monomerization, blast furnace feedstocks, gasification, thermal recycling, and conversion to fuel. This is an essential guide for anyone involved in plastic waste or recycling, including researchers and advanced students across plastics engineering, polymer science, polymer chemistry, environmental science, and sustainable materials. Presents actionable solutions for reducing plastic waste, with a focus on the concepts of collection, re-use, recycling and replacement Considers major societal and environmental issues, providing the reader with a broader understanding and supporting effective implementation Includes detailed case studies from across the globe, offering unique insights into different solutions and approaches

The Complete Book on Biodegradable Plastics and Polymers (Recent Developments, Properties, Analysis, Materials & Processes)

The Complete Book on Biodegradable Plastics and Polymers (Recent Developments, Properties, Analysis, Materials & Processes) PDF Author: NIIR Board of Consultants & Engineers
Publisher: ASIA PACIFIC BUSINESS PRESS Inc.
ISBN: 8178330350
Category : Plastics
Languages : en
Pages : 672

Get Book

Book Description
Biodegradable plastics made with plant based materials have been available for many years. The term biodegradable means that a substance is able to be broken down into simpler substances by the activities of living organisms, and therefore is unlikely to persist in the environment. There are many different standards used to measure biodegradability, with each country having its own. The requirements range from 90 per cent to 60 per cent decomposition of the product within 60 to 180 days of being placed in a standard composting environment. They may be composed of either bio plastics, which are plastics whose components are derived from renewable raw materials, or petroleum based plastics which contain additives. Biodegradability of plastics is dependent on the chemical structure of the material and on constitution of the final product, not just on the raw materials used for its production. Polyesters play a predominant role as biodegradable plastics due to their potentially hydrolysable ester bonds. Bio based polymers are divided into three categories based on their origin and production; polymer directly extracted from biomass, polymers produced by classical chemical synthesis using renewable biomass monomer and polymers produces by microorganisms or genetically modified bacteria. In response to public concern about the effects of plastics on the environment and in particular the damaging effects of sea litter on animals and birds, legislation is being enacted or is pending in many countries to ban non degradable packing, finishing nets etc. This book basically deals with biodegradable plastics developments and environmental impacts, hydro biodegradable and photo biodegradable, starch synthetic aliphatic polyester blends, difference between standards for biodegradation, polybutylene succinate (pbs) and polybutylene, recent developments in the biopolymer industry, recent advances in synthesis of biopolymers by traditional methodologies, polymers, environmentally degradable synthetic biodegradable polymers as medical devices, polymers produced from classical chemical synthesis from bio based monomers, potential bio based packaging materials, conventional packaging materials, environmental impact of bio based materials: biodegradability and compostability, etc. Environmentally acceptable degradable polymers have been defined as polymers that degrade in the environment by several mechanisms and culminate in complete biodegradation so that no residue remains in the environment. The present book gives thorough information to biodegradable plastic and polymers. This is an excellent book for scientists engineers, students and industrial researchers in the field of bio based materials.

Green Plastics

Green Plastics PDF Author: E. S. Stevens
Publisher: Princeton University Press
ISBN: 0691214174
Category : Science
Languages : en
Pages : 249

Get Book

Book Description
Plastics are everywhere. Bags, bank cards, bottles, and even boats can all be made of this celebrated but much-maligned material. Yet most of us know next to nothing about plastics. We do know that they are practical and cheap--but they also represent a huge environmental problem, for they literally take ages to decompose. In this engaging book, E.S. Stevens tells us everything we have always wondered about plastics and of the efforts, in America, Europe, and Asia, to develop a new breed of environmentally friendly plastics. He points to a possible future where plastics will no longer be made of petroleum, but of plants. The first two chapters assess the increased use of plastics as a relatively new alternative to other materials. The third chapter introduces us to their impact on the environment and strategies for their disposal or recycling. The next two chapters cover basic concepts and terms used in polymer sciences and provide some basic chemistry. With these fundamentals in tow, the author compares how petroleum-based and biological polymers are made, and the various ways in which they decompose. He acquaints readers with the emerging technologies, their commercial viability, and their future. Finally, instructions are given for preparing basic bioplastics using readily available materials. Nonspecialists will find Green Plastics a concise introduction to this exciting interdisciplinary topic--an introduction otherwise not available. For students it provides easy entry to an area of science with wide appeal and current importance; for teachers, excellent background reading for courses in various sciences. The prospect of depleted fossil fuel supplies, and the potential benefits of bioplastics to the environment and to rural areas that could supply the raw materials, make this book a compelling presentation of a subject whose time has come.