Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields PDF Author: John Guckenheimer
Publisher: Springer Science & Business Media
ISBN: 1461211409
Category : Mathematics
Languages : en
Pages : 475

Get Book Here

Book Description
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields

Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields PDF Author: John Guckenheimer
Publisher: Springer Science & Business Media
ISBN: 1461211409
Category : Mathematics
Languages : en
Pages : 475

Get Book Here

Book Description
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.

Bifurcation Dynamics in Polynomial Discrete Systems

Bifurcation Dynamics in Polynomial Discrete Systems PDF Author: Albert C. J. Luo
Publisher: Springer Nature
ISBN: 9811552088
Category : Technology & Engineering
Languages : en
Pages : 440

Get Book Here

Book Description
This is the first book focusing on bifurcation dynamics in 1-dimensional polynomial nonlinear discrete systems. It comprehensively discusses the general mathematical conditions of bifurcations in polynomial nonlinear discrete systems, as well as appearing and switching bifurcations for simple and higher-order singularity period-1 fixed-points in the 1-dimensional polynomial discrete systems. Further, it analyzes the bifurcation trees of period-1 to chaos generated by period-doubling, and monotonic saddle-node bifurcations. Lastly, the book presents methods for period-2 and period-doubling renormalization for polynomial discrete systems, and describes the appearing mechanism and period-doublization of period-n fixed-points on bifurcation trees for the first time, offering readers fascinating insights into recent research results in nonlinear discrete systems.

Nonlinear Physical Systems

Nonlinear Physical Systems PDF Author: Oleg N. Kirillov
Publisher: John Wiley & Sons
ISBN: 111857754X
Category : Mathematics
Languages : en
Pages : 328

Get Book Here

Book Description
Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems. Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynamics, and dissipation-induced instabilities are treated with the use of the theory of Krein and Pontryagin space, index theory, the theory of multi-parameter eigenvalue problems and modern asymptotic and perturbative approaches. Each chapter contains mechanical and physical examples, and the combination of advanced material and more tutorial elements makes this book attractive for both experts and non-specialists keen to expand their knowledge on modern methods and trends in stability theory. Contents 1. Surprising Instabilities of Simple Elastic Structures, Davide Bigoni, Diego Misseroni, Giovanni Noselli and Daniele Zaccaria. 2. WKB Solutions Near an Unstable Equilibrium and Applications, Jean-François Bony, Setsuro Fujiié, Thierry Ramond and Maher Zerzeri, partially supported by French ANR project NOSEVOL. 3. The Sign Exchange Bifurcation in a Family of Linear Hamiltonian Systems, Richard Cushman, Johnathan Robbins and Dimitrii Sadovskii. 4. Dissipation Effect on Local and Global Fluid-Elastic Instabilities, Olivier Doaré. 5. Tunneling, Librations and Normal Forms in a Quantum Double Well with a Magnetic Field, Sergey Yu. Dobrokhotov and Anatoly Yu. Anikin. 6. Stability of Dipole Gap Solitons in Two-Dimensional Lattice Potentials, Nir Dror and Boris A. Malomed. 7. Representation of Wave Energy of a Rotating Flow in Terms of the Dispersion Relation, Yasuhide Fukumoto, Makoto Hirota and Youichi Mie. 8. Determining the Stability Domain of Perturbed Four-Dimensional Systems in 1:1 Resonance, Igor Hoveijn and Oleg N. Kirillov. 9. Index Theorems for Polynomial Pencils, Richard Kollár and Radomír Bosák. 10. Investigating Stability and Finding New Solutions in Conservative Fluid Flows Through Bifurcation Approaches, Paolo Luzzatto-Fegiz and Charles H.K. Williamson. 11. Evolution Equations for Finite Amplitude Waves in Parallel Shear Flows, Sherwin A. Maslowe. 12. Continuum Hamiltonian Hopf Bifurcation I, Philip J. Morrison and George I. Hagstrom. 13. Continuum Hamiltonian Hopf Bifurcation II, George I. Hagstrom and Philip J. Morrison. 14. Energy Stability Analysis for a Hybrid Fluid-Kinetic Plasma Model, Philip J. Morrison, Emanuele Tassi and Cesare Tronci. 15. Accurate Estimates for the Exponential Decay of Semigroups with Non-Self-Adjoint Generators, Francis Nier. 16. Stability Optimization for Polynomials and Matrices, Michael L. Overton. 17. Spectral Stability of Nonlinear Waves in KdV-Type Evolution Equations, Dmitry E. Pelinovsky. 18. Unfreezing Casimir Invariants: Singular Perturbations Giving Rise to Forbidden Instabilities, Zensho Yoshida and Philip J. Morrison. About the Authors Oleg N. Kirillov has been a Research Fellow at the Magneto-Hydrodynamics Division of the Helmholtz-Zentrum Dresden-Rossendorf in Germany since 2011. His research interests include non-conservative stability problems of structural mechanics and physics, perturbation theory of non-self-adjoint boundary eigenvalue problems, magnetohydrodynamics, friction-induced oscillations, dissipation-induced instabilities and non-Hermitian problems of optics and microwave physics. Since 2013 he has served as an Associate Editor for the journal Frontiers in Mathematical Physics. Dmitry E. Pelinovsky has been Professor at McMaster University in Canada since 2000. His research profile includes work with nonlinear partial differential equations, discrete dynamical systems, spectral theory, integrable systems, and numerical analysis. He served as the guest editor of the special issue of the journals Chaos in 2005 and Applicable Analysis in 2010. He is an Associate Editor of the journal Communications in Nonlinear Science and Numerical Simulations. This book is devoted to the problems of spectral analysis, stability and bifurcations arising from the nonlinear partial differential equations of modern physics. Leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics present state-of-the-art approaches to a wide spectrum of new challenging stability problems. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynamics and dissipation-induced instabilities will be treated with the use of the theory of Krein and Pontryagin space, index theory, the theory of multi-parameter eigenvalue problems and modern asymptotic and perturbative approaches. All chapters contain mechanical and physical examples and combine both tutorial and advanced sections, making them attractive both to experts in the field and non-specialists interested in knowing more about modern methods and trends in stability theory.

Bifurcation and Stability in Nonlinear Discrete Systems

Bifurcation and Stability in Nonlinear Discrete Systems PDF Author: Albert C. J. Luo
Publisher:
ISBN: 9787040552287
Category : Bifurcation theory
Languages : en
Pages : 313

Get Book Here

Book Description


Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory PDF Author: Yuri Kuznetsov
Publisher: Springer Science & Business Media
ISBN: 1475739788
Category : Mathematics
Languages : en
Pages : 648

Get Book Here

Book Description
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

Nonlinear Dynamics of Discrete and Continuous Systems

Nonlinear Dynamics of Discrete and Continuous Systems PDF Author: Andrei K. Abramian
Publisher: Springer Nature
ISBN: 303053006X
Category : Science
Languages : en
Pages : 284

Get Book Here

Book Description
This book commemorates the 60th birthday of Dr. Wim van Horssen, a specialist in nonlinear dynamic and wave processes in solids, fluids and structures. In honor of Dr. Horssen’s contributions to the field, it presents papers discussing topics such as the current problems of the theory of nonlinear dynamic processes in continua and structures; applications, including discrete and continuous dynamic models of structures and media; and problems of asymptotic approaches.

Regularity and Complexity in Dynamical Systems

Regularity and Complexity in Dynamical Systems PDF Author: Albert C. J. Luo
Publisher: Springer Science & Business Media
ISBN: 1461415241
Category : Technology & Engineering
Languages : en
Pages : 503

Get Book Here

Book Description
Regularity and Complexity in Dynamical Systems describes periodic and chaotic behaviors in dynamical systems, including continuous, discrete, impulsive, discontinuous, and switching systems. In traditional analysis, the periodic and chaotic behaviors in continuous, nonlinear dynamical systems were extensively discussed even if unsolved. In recent years, there has been an increasing amount of interest in periodic and chaotic behaviors in discontinuous dynamical systems because such dynamical systems are prevalent in engineering. Usually, the smoothening of discontinuous dynamical system is adopted in order to use the theory of continuous dynamical systems. However, such technique cannot provide suitable results in such discontinuous systems. In this book, an alternative way is presented to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.

Stability Regions of Nonlinear Dynamical Systems

Stability Regions of Nonlinear Dynamical Systems PDF Author: Hsiao-Dong Chiang
Publisher: Cambridge University Press
ISBN: 1316368327
Category : Technology & Engineering
Languages : en
Pages : 483

Get Book Here

Book Description
This authoritative treatment covers theory, optimal estimation and a range of practical applications. The first book on the subject, and written by leading researchers, this clear and rigorous work presents a comprehensive theory for both the stability boundary and the stability regions of a range of nonlinear dynamical systems including continuous, discrete, complex, two-time-scale and non-hyperbolic systems, illustrated with numerical examples. The authors also propose new concepts of quasi-stability region and of relevant stability regions and their complete characterisations. Optimal schemes for estimating stability regions of general nonlinear dynamical systems are also covered, and finally the authors describe and explain how the theory is applied in applications including direct methods for power system transient stability analysis, nonlinear optimisation for finding a set of high-quality optimal solutions, stabilisation of nonlinear systems, ecosystem dynamics, and immunisation problems.

New Methods for Chaotic Dynamics

New Methods for Chaotic Dynamics PDF Author: Nikolai Aleksandrovich Magnitskii
Publisher: World Scientific
ISBN: 9812773517
Category : Mathematics
Languages : en
Pages : 382

Get Book Here

Book Description
This book presents a new theory on the transition to dynamical chaos for two-dimensional nonautonomous, and three-dimensional, many-dimensional and infinitely-dimensional autonomous nonlinear dissipative systems of differential equations including nonlinear partial differential equations and differential equations with delay arguments. The transition is described from the Feigenbaum cascade of period doubling bifurcations of the original singular cycle to the complete or incomplete Sharkovskii subharmonic cascade of bifurcations of stable limit cycles with arbitrary period and finally to the complete or incomplete homoclinic cascade of bifurcations. The book presents a distinct view point on the principles of formation, scenarios of occurrence and ways of control of chaotic motion in nonlinear dissipative dynamical systems. All theoretical results and conclusions of the theory are strictly proved and confirmed by numerous examples, illustrations and numerical calculations. Sample Chapter(s). Chapter 1: Systems of Ordinary Differential Equations (1,736 KB). Contents: Systems of Ordinary Differential Equations; Bifurcations in Nonlinear Systems of Ordinary Differential Equations; Chaotic Systems of Ordinary Differential Equations; Principles of the Theory of Dynamical Chaos in Dissipative Systems of Ordinary Differential Equations; Dynamical Chaos in Infinitely-Dimensional Systems of Differential Equations; Chaos Control in Systems of Differential Equations. Readership: Graduate students and researchers in complex and chaotic dynamical systems.

Stability, Bifurcation and Postcritical Behaviour of Elastic Structures

Stability, Bifurcation and Postcritical Behaviour of Elastic Structures PDF Author: M. Pignataro
Publisher: Elsevier
ISBN: 1483290832
Category : Technology & Engineering
Languages : en
Pages : 375

Get Book Here

Book Description
A comprehensive and systematic analysis of elastic structural stability is presented in this volume. Traditional engineering buckling concepts are discussed in the framework of the Liapunov theory of stability by giving an extensive review of the Koiter approach. The perturbation method for both nonlinear algebraic and differential equations is discussed and adopted as the main tool for postbuckling analysis. The formulation of the buckling problem for the most common engineering structures - rods and frames, plates, shells, and thin-walled beams, is performed and the critical load evaluated for problems of interest. In many cases the postbuckling analysis up to the second order is presented. The use of the Ritz-Galerkin and of the finite element methods is examined as a tool for approximate bifurcation analysis. The volume will provide an up-to-date introduction for non-specialists in elastic stability theory and methods, and is intended for graduate and post-graduate students and researchers interested in nonlinear structural analysis problems. Basic prerequisites are kept to a minimum, a familiarity with elementary algebra and calculus is all that is required of readers to make use of this book.