Author: Aubrey Clayton
Publisher: Columbia University Press
ISBN: 0231553358
Category : Mathematics
Languages : en
Pages : 641
Book Description
There is a logical flaw in the statistical methods used across experimental science. This fault is not a minor academic quibble: it underlies a reproducibility crisis now threatening entire disciplines. In an increasingly statistics-reliant society, this same deeply rooted error shapes decisions in medicine, law, and public policy with profound consequences. The foundation of the problem is a misunderstanding of probability and its role in making inferences from observations. Aubrey Clayton traces the history of how statistics went astray, beginning with the groundbreaking work of the seventeenth-century mathematician Jacob Bernoulli and winding through gambling, astronomy, and genetics. Clayton recounts the feuds among rival schools of statistics, exploring the surprisingly human problems that gave rise to the discipline and the all-too-human shortcomings that derailed it. He highlights how influential nineteenth- and twentieth-century figures developed a statistical methodology they claimed was purely objective in order to silence critics of their political agendas, including eugenics. Clayton provides a clear account of the mathematics and logic of probability, conveying complex concepts accessibly for readers interested in the statistical methods that frame our understanding of the world. He contends that we need to take a Bayesian approach—that is, to incorporate prior knowledge when reasoning with incomplete information—in order to resolve the crisis. Ranging across math, philosophy, and culture, Bernoulli’s Fallacy explains why something has gone wrong with how we use data—and how to fix it.
Bernoulli's Fallacy
Author: Aubrey Clayton
Publisher: Columbia University Press
ISBN: 0231553358
Category : Mathematics
Languages : en
Pages : 641
Book Description
There is a logical flaw in the statistical methods used across experimental science. This fault is not a minor academic quibble: it underlies a reproducibility crisis now threatening entire disciplines. In an increasingly statistics-reliant society, this same deeply rooted error shapes decisions in medicine, law, and public policy with profound consequences. The foundation of the problem is a misunderstanding of probability and its role in making inferences from observations. Aubrey Clayton traces the history of how statistics went astray, beginning with the groundbreaking work of the seventeenth-century mathematician Jacob Bernoulli and winding through gambling, astronomy, and genetics. Clayton recounts the feuds among rival schools of statistics, exploring the surprisingly human problems that gave rise to the discipline and the all-too-human shortcomings that derailed it. He highlights how influential nineteenth- and twentieth-century figures developed a statistical methodology they claimed was purely objective in order to silence critics of their political agendas, including eugenics. Clayton provides a clear account of the mathematics and logic of probability, conveying complex concepts accessibly for readers interested in the statistical methods that frame our understanding of the world. He contends that we need to take a Bayesian approach—that is, to incorporate prior knowledge when reasoning with incomplete information—in order to resolve the crisis. Ranging across math, philosophy, and culture, Bernoulli’s Fallacy explains why something has gone wrong with how we use data—and how to fix it.
Publisher: Columbia University Press
ISBN: 0231553358
Category : Mathematics
Languages : en
Pages : 641
Book Description
There is a logical flaw in the statistical methods used across experimental science. This fault is not a minor academic quibble: it underlies a reproducibility crisis now threatening entire disciplines. In an increasingly statistics-reliant society, this same deeply rooted error shapes decisions in medicine, law, and public policy with profound consequences. The foundation of the problem is a misunderstanding of probability and its role in making inferences from observations. Aubrey Clayton traces the history of how statistics went astray, beginning with the groundbreaking work of the seventeenth-century mathematician Jacob Bernoulli and winding through gambling, astronomy, and genetics. Clayton recounts the feuds among rival schools of statistics, exploring the surprisingly human problems that gave rise to the discipline and the all-too-human shortcomings that derailed it. He highlights how influential nineteenth- and twentieth-century figures developed a statistical methodology they claimed was purely objective in order to silence critics of their political agendas, including eugenics. Clayton provides a clear account of the mathematics and logic of probability, conveying complex concepts accessibly for readers interested in the statistical methods that frame our understanding of the world. He contends that we need to take a Bayesian approach—that is, to incorporate prior knowledge when reasoning with incomplete information—in order to resolve the crisis. Ranging across math, philosophy, and culture, Bernoulli’s Fallacy explains why something has gone wrong with how we use data—and how to fix it.
Bernoulli's Fallacy
Author:
Publisher:
ISBN: 9780231199957
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9780231199957
Category :
Languages : en
Pages :
Book Description
Ludwig Boltzmann
Author: Carlo Cercignani
Publisher: OUP Oxford
ISBN: 0191606987
Category : Science
Languages : en
Pages : 660
Book Description
This book presents the life and personality, the scientific and philosophical work of Ludwig Boltzmann, one of the great scientists who marked the passage from 19th- to 20th-Century physics. His rich and tragic life, ending by suicide at the age of 62, is described in detail. A substantial part of the book is devoted to discussing his scientific and philosophical ideas and placing them in the context of the second half of the 19th century. The fact that Boltzmann was the man who did most to establish that there is a microscopic, atomic structure underlying macroscopic bodies is documented, as is Boltzmann's influence on modern physics, especially through the work of Planck on light quanta and of Einstein on Brownian motion. Boltzmann was the centre of a scientific upheaval, and he has been proved right on many crucial issues. He anticipated Kuhn's theory of scientific revolutions and proposed a theory of knowledge based on Darwin. His basic results, when properly understood, can also be stated as mathematical theorems. Some of these have been proved: others are still at the level of likely but unproven conjectures. The main text of this biography is written almost entirely without equations. Mathematical appendices deepen knowledge of some technical aspects of the subject.
Publisher: OUP Oxford
ISBN: 0191606987
Category : Science
Languages : en
Pages : 660
Book Description
This book presents the life and personality, the scientific and philosophical work of Ludwig Boltzmann, one of the great scientists who marked the passage from 19th- to 20th-Century physics. His rich and tragic life, ending by suicide at the age of 62, is described in detail. A substantial part of the book is devoted to discussing his scientific and philosophical ideas and placing them in the context of the second half of the 19th century. The fact that Boltzmann was the man who did most to establish that there is a microscopic, atomic structure underlying macroscopic bodies is documented, as is Boltzmann's influence on modern physics, especially through the work of Planck on light quanta and of Einstein on Brownian motion. Boltzmann was the centre of a scientific upheaval, and he has been proved right on many crucial issues. He anticipated Kuhn's theory of scientific revolutions and proposed a theory of knowledge based on Darwin. His basic results, when properly understood, can also be stated as mathematical theorems. Some of these have been proved: others are still at the level of likely but unproven conjectures. The main text of this biography is written almost entirely without equations. Mathematical appendices deepen knowledge of some technical aspects of the subject.
Probability Theory
Author:
Publisher: Allied Publishers
ISBN: 9788177644517
Category :
Languages : en
Pages : 436
Book Description
Probability theory
Publisher: Allied Publishers
ISBN: 9788177644517
Category :
Languages : en
Pages : 436
Book Description
Probability theory
Bayesian Statistics the Fun Way
Author: Will Kurt
Publisher: No Starch Press
ISBN: 1593279566
Category : Mathematics
Languages : en
Pages : 258
Book Description
Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.
Publisher: No Starch Press
ISBN: 1593279566
Category : Mathematics
Languages : en
Pages : 258
Book Description
Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.
Combinatorics of Genome Rearrangements
Author: Guillaume Fertin
Publisher: MIT Press
ISBN: 0262062828
Category : Combinatorial analysis
Languages : en
Pages : 305
Book Description
A comprehensive survey of a rapidly expanding field of combinatorial optimization, mathematically oriented but offering biological explanations when required. From one cell to another, from one individual to another, and from one species to another, the content of DNA molecules is often similar. The organization of these molecules, however, differs dramatically, and the mutations that affect this organization are known as genome rearrangements. Combinatorial methods are used to reconstruct putative rearrangement scenarios in order to explain the evolutionary history of a set of species, often formalizing the evolutionary events that can explain the multiple combinations of observed genomes as combinatorial optimization problems. This book offers the first comprehensive survey of this rapidly expanding application of combinatorial optimization. It can be used as a reference for experienced researchers or as an introductory text for a broader audience. Genome rearrangement problems have proved so interesting from a combinatorial point of view that the field now belongs as much to mathematics as to biology. This book takes a mathematically oriented approach, but provides biological background when necessary. It presents a series of models, beginning with the simplest (which is progressively extended by dropping restrictions), each constructing a genome rearrangement problem. The book also discusses an important generalization of the basic problem known as the median problem, surveys attempts to reconstruct the relationships between genomes with phylogenetic trees, and offers a collection of summaries and appendixes with useful additional information.
Publisher: MIT Press
ISBN: 0262062828
Category : Combinatorial analysis
Languages : en
Pages : 305
Book Description
A comprehensive survey of a rapidly expanding field of combinatorial optimization, mathematically oriented but offering biological explanations when required. From one cell to another, from one individual to another, and from one species to another, the content of DNA molecules is often similar. The organization of these molecules, however, differs dramatically, and the mutations that affect this organization are known as genome rearrangements. Combinatorial methods are used to reconstruct putative rearrangement scenarios in order to explain the evolutionary history of a set of species, often formalizing the evolutionary events that can explain the multiple combinations of observed genomes as combinatorial optimization problems. This book offers the first comprehensive survey of this rapidly expanding application of combinatorial optimization. It can be used as a reference for experienced researchers or as an introductory text for a broader audience. Genome rearrangement problems have proved so interesting from a combinatorial point of view that the field now belongs as much to mathematics as to biology. This book takes a mathematically oriented approach, but provides biological background when necessary. It presents a series of models, beginning with the simplest (which is progressively extended by dropping restrictions), each constructing a genome rearrangement problem. The book also discusses an important generalization of the basic problem known as the median problem, surveys attempts to reconstruct the relationships between genomes with phylogenetic trees, and offers a collection of summaries and appendixes with useful additional information.
The Theory of Probability
Author: Harold Jeffreys
Publisher: OUP Oxford
ISBN: 0191589675
Category : Science
Languages : en
Pages : 474
Book Description
Another title in the reissued Oxford Classic Texts in the Physical Sciences series, Jeffrey's Theory of Probability, first published in 1939, was the first to develop a fundamental theory of scientific inference based on the ideas of Bayesian statistics. His ideas were way ahead of their time and it is only in the past ten years that the subject of Bayes' factors has been significantly developed and extended. Until recently the two schools of statistics (Bayesian and Frequentist) were distinctly different and set apart. Recent work (aided by increased computer power and availability) has changed all that and today's graduate students and researchers all require an understanding of Bayesian ideas. This book is their starting point.
Publisher: OUP Oxford
ISBN: 0191589675
Category : Science
Languages : en
Pages : 474
Book Description
Another title in the reissued Oxford Classic Texts in the Physical Sciences series, Jeffrey's Theory of Probability, first published in 1939, was the first to develop a fundamental theory of scientific inference based on the ideas of Bayesian statistics. His ideas were way ahead of their time and it is only in the past ten years that the subject of Bayes' factors has been significantly developed and extended. Until recently the two schools of statistics (Bayesian and Frequentist) were distinctly different and set apart. Recent work (aided by increased computer power and availability) has changed all that and today's graduate students and researchers all require an understanding of Bayesian ideas. This book is their starting point.
The Myth of Pain
Author: Valerie Gray Hardcastle
Publisher: MIT Press
ISBN: 9780262582100
Category : Medical
Languages : en
Pages : 328
Book Description
Valerie Gray Hardcastle argues that both professional and lay definitions of pain are wrongheaded -- with consequences for how pain and pain patients are treated, how psychological disorders are understood, and how clinicians define the mind/body relationship. Pain, although very common, is little understood. Worse still, according to Valerie Gray Hardcastle, both professional and lay definitions of pain are wrongheaded -- with consequences for how pain and pain patients are treated, how psychological disorders are understood, and how clinicians define the mind/body relationship. Hardcastle offers a biologically based complex theory of pain processing, inhibition, and sensation and then uses this theory to make several arguments: (1) psychogenic pains do not exist; (2) a general lack of knowledge about fundamental brain function prevents us from distinguishing between mental and physical causes, although the distinction remains useful; (3) most pain talk should be eliminated from both the folk and academic communities; and (4) such a biological approach is useful generally for explaining disorders in pain processing. She shows how her analysis of pain can serve as a model for the analysis of other psychological disorders and suggests that her project be taken as a model for the philosophical analysis of disorders in psychology, psychiatry, and neuroscience.
Publisher: MIT Press
ISBN: 9780262582100
Category : Medical
Languages : en
Pages : 328
Book Description
Valerie Gray Hardcastle argues that both professional and lay definitions of pain are wrongheaded -- with consequences for how pain and pain patients are treated, how psychological disorders are understood, and how clinicians define the mind/body relationship. Pain, although very common, is little understood. Worse still, according to Valerie Gray Hardcastle, both professional and lay definitions of pain are wrongheaded -- with consequences for how pain and pain patients are treated, how psychological disorders are understood, and how clinicians define the mind/body relationship. Hardcastle offers a biologically based complex theory of pain processing, inhibition, and sensation and then uses this theory to make several arguments: (1) psychogenic pains do not exist; (2) a general lack of knowledge about fundamental brain function prevents us from distinguishing between mental and physical causes, although the distinction remains useful; (3) most pain talk should be eliminated from both the folk and academic communities; and (4) such a biological approach is useful generally for explaining disorders in pain processing. She shows how her analysis of pain can serve as a model for the analysis of other psychological disorders and suggests that her project be taken as a model for the philosophical analysis of disorders in psychology, psychiatry, and neuroscience.
The Meaning of 'ought'
Author: Matthew Chrisman
Publisher: Oxford University Press, USA
ISBN: 0199363005
Category : Language Arts & Disciplines
Languages : en
Pages : 277
Book Description
This book motivates a novel inferentialist account of the meaning of a core set of normative sentences. Building on a careful truth-conditionalist semantics for 'ought' considered as a modal word, Chrisman argues that ought-sentences mean what they do neither because of how they describe reality nor because of the noncognitive attitudes they express, but because of their inferential role.
Publisher: Oxford University Press, USA
ISBN: 0199363005
Category : Language Arts & Disciplines
Languages : en
Pages : 277
Book Description
This book motivates a novel inferentialist account of the meaning of a core set of normative sentences. Building on a careful truth-conditionalist semantics for 'ought' considered as a modal word, Chrisman argues that ought-sentences mean what they do neither because of how they describe reality nor because of the noncognitive attitudes they express, but because of their inferential role.
Information Theory, Inference and Learning Algorithms
Author: David J. C. MacKay
Publisher: Cambridge University Press
ISBN: 9780521642989
Category : Computers
Languages : en
Pages : 694
Book Description
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
Publisher: Cambridge University Press
ISBN: 9780521642989
Category : Computers
Languages : en
Pages : 694
Book Description
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.