Bayesian Inference in Wavelet-Based Models

Bayesian Inference in Wavelet-Based Models PDF Author: Peter Müller
Publisher: Springer Science & Business Media
ISBN: 1461205670
Category : Mathematics
Languages : en
Pages : 406

Get Book Here

Book Description
This volume presents an overview of Bayesian methods for inference in the wavelet domain. The papers in this volume are divided into six parts: The first two papers introduce basic concepts. Chapters in Part II explore different approaches to prior modeling, using independent priors. Papers in the Part III discuss decision theoretic aspects of such prior models. In Part IV, some aspects of prior modeling using priors that account for dependence are explored. Part V considers the use of 2-dimensional wavelet decomposition in spatial modeling. Chapters in Part VI discuss the use of empirical Bayes estimation in wavelet based models. Part VII concludes the volume with a discussion of case studies using wavelet based Bayesian approaches. The cooperation of all contributors in the timely preparation of their manuscripts is greatly recognized. We decided early on that it was impor tant to referee and critically evaluate the papers which were submitted for inclusion in this volume. For this substantial task, we relied on the service of numerous referees to whom we are most indebted. We are also grateful to John Kimmel and the Springer-Verlag referees for considering our proposal in a very timely manner. Our special thanks go to our spouses, Gautami and Draga, for their support.

Bayesian Inference in Wavelet-Based Models

Bayesian Inference in Wavelet-Based Models PDF Author: Peter Müller
Publisher: Springer Science & Business Media
ISBN: 1461205670
Category : Mathematics
Languages : en
Pages : 406

Get Book Here

Book Description
This volume presents an overview of Bayesian methods for inference in the wavelet domain. The papers in this volume are divided into six parts: The first two papers introduce basic concepts. Chapters in Part II explore different approaches to prior modeling, using independent priors. Papers in the Part III discuss decision theoretic aspects of such prior models. In Part IV, some aspects of prior modeling using priors that account for dependence are explored. Part V considers the use of 2-dimensional wavelet decomposition in spatial modeling. Chapters in Part VI discuss the use of empirical Bayes estimation in wavelet based models. Part VII concludes the volume with a discussion of case studies using wavelet based Bayesian approaches. The cooperation of all contributors in the timely preparation of their manuscripts is greatly recognized. We decided early on that it was impor tant to referee and critically evaluate the papers which were submitted for inclusion in this volume. For this substantial task, we relied on the service of numerous referees to whom we are most indebted. We are also grateful to John Kimmel and the Springer-Verlag referees for considering our proposal in a very timely manner. Our special thanks go to our spouses, Gautami and Draga, for their support.

Practical Nonparametric and Semiparametric Bayesian Statistics

Practical Nonparametric and Semiparametric Bayesian Statistics PDF Author: Dipak D. Dey
Publisher: Springer Science & Business Media
ISBN: 1461217326
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
A compilation of original articles by Bayesian experts, this volume presents perspectives on recent developments on nonparametric and semiparametric methods in Bayesian statistics. The articles discuss how to conceptualize and develop Bayesian models using rich classes of nonparametric and semiparametric methods, how to use modern computational tools to summarize inferences, and how to apply these methodologies through the analysis of case studies.

Brain Imaging Methods Editor’s Pick 2021

Brain Imaging Methods Editor’s Pick 2021 PDF Author: Vince D. Calhoun
Publisher: Frontiers Media SA
ISBN: 2889669653
Category : Science
Languages : en
Pages : 440

Get Book Here

Book Description


Advances in Neural Networks - ISNN 2004

Advances in Neural Networks - ISNN 2004 PDF Author: Fuliang Yin
Publisher: Springer
ISBN: 3540286489
Category : Computers
Languages : en
Pages : 1054

Get Book Here

Book Description
This book constitutes the proceedings of the International Symposium on Neural N- works (ISNN 2004) held in Dalian, Liaoning, China duringAugust 19–21, 2004. ISNN 2004 received over 800 submissions from authors in ?ve continents (Asia, Europe, North America, South America, and Oceania), and 23 countries and regions (mainland China, Hong Kong, Taiwan, South Korea, Japan, Singapore, India, Iran, Israel, Turkey, Hungary, Poland, Germany, France, Belgium, Spain, UK, USA, Canada, Mexico, - nezuela, Chile, andAustralia). Based on reviews, the Program Committee selected 329 high-quality papers for presentation at ISNN 2004 and publication in the proceedings. The papers are organized into many topical sections under 11 major categories (theo- tical analysis; learning and optimization; support vector machines; blind source sepa- tion,independentcomponentanalysis,andprincipalcomponentanalysis;clusteringand classi?cation; robotics and control; telecommunications; signal, image and time series processing; detection, diagnostics, and computer security; biomedical applications; and other applications) covering the whole spectrum of the recent neural network research and development. In addition to the numerous contributed papers, ?ve distinguished scholars were invited to give plenary speeches at ISNN 2004. ISNN 2004 was an inaugural event. It brought together a few hundred researchers, educators,scientists,andpractitionerstothebeautifulcoastalcityDalianinnortheastern China. It provided an international forum for the participants to present new results, to discuss the state of the art, and to exchange information on emerging areas and future trends of neural network research. It also created a nice opportunity for the participants to meet colleagues and make friends who share similar research interests.

Master's Theses Directories

Master's Theses Directories PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 412

Get Book Here

Book Description
"Education, arts and social sciences, natural and technical sciences in the United States and Canada".

Emerging Technologies in Intelligent Applications for Image and Video Processing

Emerging Technologies in Intelligent Applications for Image and Video Processing PDF Author: Santhi, V.
Publisher: IGI Global
ISBN: 1466696869
Category : Computers
Languages : en
Pages : 543

Get Book Here

Book Description
Image and Video Processing is an active area of research due to its potential applications for solving real-world problems. Integrating computational intelligence to analyze and interpret information from image and video technologies is an essential step to processing and applying multimedia data. Emerging Technologies in Intelligent Applications for Image and Video Processing presents the most current research relating to multimedia technologies including video and image restoration and enhancement as well as algorithms used for image and video compression, indexing and retrieval processes, and security concerns. Featuring insight from researchers from around the world, this publication is designed for use by engineers, IT specialists, researchers, and graduate level students.

Multiscale Signal Analysis and Modeling

Multiscale Signal Analysis and Modeling PDF Author: Xiaoping Shen
Publisher: Springer Science & Business Media
ISBN: 1461441455
Category : Technology & Engineering
Languages : en
Pages : 388

Get Book Here

Book Description
Multiscale Signal Analysis and Modeling presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory.

Statistical Modeling by Wavelets

Statistical Modeling by Wavelets PDF Author: Brani Vidakovic
Publisher: John Wiley & Sons
ISBN: 0470317868
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
A comprehensive, step-by-step introduction to wavelets in statistics. What are wavelets? What makes them increasingly indispensable in statistical nonparametrics? Why are they suitable for "time-scale" applications? How are they used to solve such problems as denoising, regression, or density estimation? Where can one find up-to-date information on these newly "discovered" mathematical objects? These are some of the questions Brani Vidakovic answers in Statistical Modeling by Wavelets. Providing a much-needed introduction to the latest tools afforded statisticians by wavelet theory, Vidakovic compiles, organizes, and explains in depth research data previously available only in disparate journal articles. He carefully balances both statistical and mathematical techniques, supplementing the material with a wealth of examples, more than 100 illustrations, and extensive references-with data sets and S-Plus wavelet overviews made available for downloading over the Internet. Both introductory and data-oriented modeling topics are featured, including: * Continuous and discrete wavelet transformations. * Statistical optimality properties of wavelet shrinkage. * Theoretical aspects of wavelet density estimation. * Bayesian modeling in the wavelet domain. * Properties of wavelet-based random functions and densities. * Several novel and important wavelet applications in statistics. * Wavelet methods in time series. Accessible to anyone with a background in advanced calculus and algebra, Statistical Modeling by Wavelets promises to become the standard reference for statisticians and engineers seeking a comprehensive introduction to an emerging field.

Wavelets and Statistics

Wavelets and Statistics PDF Author: Anestis Antoniadis
Publisher: Springer Science & Business Media
ISBN: 1461225442
Category : Mathematics
Languages : en
Pages : 407

Get Book Here

Book Description
Despite its short history, wavelet theory has found applications in a remarkable diversity of disciplines: mathematics, physics, numerical analysis, signal processing, probability theory and statistics. The abundance of intriguing and useful features enjoyed by wavelet and wavelet packed transforms has led to their application to a wide range of statistical and signal processing problems. On November 16-18, 1994, a conference on Wavelets and Statistics was held at Villard de Lans, France, organized by the Institute IMAG-LMC, Grenoble, France. The meeting was the 15th in the series of the Rencontres Pranco-Belges des 8tatisticiens and was attended by 74 mathematicians from 12 different countries. Following tradition, both theoretical statistical results and practical contributions of this active field of statistical research were presented. The editors and the local organizers hope that this volume reflects the broad spectrum of the conference. as it includes 21 articles contributed by specialists in various areas in this field. The material compiled is fairly wide in scope and ranges from the development of new tools for non parametric curve estimation to applied problems, such as detection of transients in signal processing and image segmentation. The articles are arranged in alphabetical order by author rather than subject matter. However, to help the reader, a subjective classification of the articles is provided at the end of the book. Several articles of this volume are directly or indirectly concerned with several as pects of wavelet-based function estimation and signal denoising.

Bayesian Methods for Nonlinear Classification and Regression

Bayesian Methods for Nonlinear Classification and Regression PDF Author: David G. T. Denison
Publisher: John Wiley & Sons
ISBN: 9780471490364
Category : Mathematics
Languages : en
Pages : 302

Get Book Here

Book Description
Bei der Regressionsanalyse von Datenmaterial erhält man leider selten lineare oder andere einfache Zusammenhänge (parametrische Modelle). Dieses Buch hilft Ihnen, auch komplexere, nichtparametrische Modelle zu verstehen und zu beherrschen. Stärken und Schwächen jedes einzelnen Modells werden durch die Anwendung auf Standarddatensätze demonstriert. Verbreitete nichtparametrische Modelle werden mit Hilfe von Bayes-Verfahren in einen kohärenten wahrscheinlichkeitstheoretischen Zusammenhang gebracht.