Bayesian Models for Astrophysical Data

Bayesian Models for Astrophysical Data PDF Author: Joseph M. Hilbe
Publisher: Cambridge University Press
ISBN: 1108210740
Category : Mathematics
Languages : en
Pages : 429

Get Book Here

Book Description
This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.

Bayesian Models for Astrophysical Data

Bayesian Models for Astrophysical Data PDF Author: Joseph M. Hilbe
Publisher: Cambridge University Press
ISBN: 1108210740
Category : Mathematics
Languages : en
Pages : 429

Get Book Here

Book Description
This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.

Bayesian Methods in Cosmology

Bayesian Methods in Cosmology PDF Author: Michael P. Hobson
Publisher: Cambridge University Press
ISBN: 0521887941
Category : Mathematics
Languages : en
Pages : 317

Get Book Here

Book Description
Comprehensive introduction to Bayesian methods in cosmological studies, for graduate students and researchers in cosmology, astrophysics and applied statistics.

Bayesian Models for Astrophysical Data

Bayesian Models for Astrophysical Data PDF Author: Joseph M. Hilbe
Publisher: Cambridge University Press
ISBN: 1107133084
Category : Mathematics
Languages : en
Pages : 429

Get Book Here

Book Description
A hands-on guide to Bayesian models with R, JAGS, Python, and Stan code, for a wide range of astronomical data types.

Practical Bayesian Inference

Practical Bayesian Inference PDF Author: Coryn A. L. Bailer-Jones
Publisher: Cambridge University Press
ISBN: 1108127673
Category : Mathematics
Languages : en
Pages : 306

Get Book Here

Book Description
Science is fundamentally about learning from data, and doing so in the presence of uncertainty. This volume is an introduction to the major concepts of probability and statistics, and the computational tools for analysing and interpreting data. It describes the Bayesian approach, and explains how this can be used to fit and compare models in a range of problems. Topics covered include regression, parameter estimation, model assessment, and Monte Carlo methods, as well as widely used classical methods such as regularization and hypothesis testing. The emphasis throughout is on the principles, the unifying probabilistic approach, and showing how the methods can be implemented in practice. R code (with explanations) is included and is available online, so readers can reproduce the plots and results for themselves. Aimed primarily at undergraduate and graduate students, these techniques can be applied to a wide range of data analysis problems beyond the scope of this work.

Modeling Count Data

Modeling Count Data PDF Author: Joseph M. Hilbe
Publisher: Cambridge University Press
ISBN: 1107028337
Category : Business & Economics
Languages : en
Pages : 301

Get Book Here

Book Description
This book provides guidelines and fully worked examples of how to select, construct, interpret and evaluate the full range of count models.

Modern Statistical Methods for Astronomy

Modern Statistical Methods for Astronomy PDF Author: Eric D. Feigelson
Publisher: Cambridge University Press
ISBN: 052176727X
Category : Science
Languages : en
Pages : 495

Get Book Here

Book Description
Modern Statistical Methods for Astronomy: With R Applications.

Numerical Analysis Using R

Numerical Analysis Using R PDF Author: Graham W. Griffiths
Publisher: Cambridge University Press
ISBN: 131665415X
Category : Mathematics
Languages : en
Pages : 637

Get Book Here

Book Description
This book presents the latest numerical solutions to initial value problems and boundary value problems described by ODEs and PDEs. The author offers practical methods that can be adapted to solve wide ranges of problems and illustrates them in the increasingly popular open source computer language R, allowing integration with more statistically based methods. The book begins with standard techniques, followed by an overview of 'high resolution' flux limiters and WENO to solve problems with solutions exhibiting high gradient phenomena. Meshless methods using radial basis functions are then discussed in the context of scattered data interpolation and the solution of PDEs on irregular grids. Three detailed case studies demonstrate how numerical methods can be used to tackle very different complex problems. With its focus on practical solutions to real-world problems, this book will be useful to students and practitioners in all areas of science and engineering, especially those using R.

Bayesian Astrophysics

Bayesian Astrophysics PDF Author: Andrés Asensio Ramos
Publisher: Cambridge University Press
ISBN: 1107102138
Category : Mathematics
Languages : en
Pages : 209

Get Book Here

Book Description
Provides an overview of the fundamentals of Bayesian inference and its applications within astrophysics, for graduate students and researchers.

Bayesian Statistical Modelling

Bayesian Statistical Modelling PDF Author: P. Congdon
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 568

Get Book Here

Book Description
Bayesian methods draw upon previous research findings and combine them with sample data to analyse problems and modify existing hypotheses. The calculations are often extremely complex, with many only now possible due to recent advances in computing technology. Bayesian methods have as a result gained wider acceptance, and are applied in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Bayesian Statistical Modelling presents an accessible overview of modelling applications from a Bayesian perspective. * Provides an integrated presentation of theory, examples and computer algorithms * Examines model fitting in practice using Bayesian principles * Features a comprehensive range of methodologies and modelling techniques * Covers recent innovations in bayesian modelling, including Markov Chain Monte Carlo methods * Includes extensive applications to health and social sciences * Features a comprehensive collection of nearly 200 worked examples * Data examples and computer code in WinBUGS are available via ftp Whilst providing a general overview of Bayesian modelling, the author places emphasis on the principles of prior selection, model identification and interpretation of findings, in a range of modelling innovations, focussing on their implementation with real data, with advice as to appropriate computing choices and strategies. Researchers in applied statistics, medical science, public health and the social sciences will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a good reference source for both researchers and students.

Bayesian Logical Data Analysis for the Physical Sciences

Bayesian Logical Data Analysis for the Physical Sciences PDF Author: Phil Gregory
Publisher: Cambridge University Press
ISBN: 113944428X
Category : Mathematics
Languages : en
Pages : 498

Get Book Here

Book Description
Bayesian inference provides a simple and unified approach to data analysis, allowing experimenters to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. By incorporating relevant prior information, it can sometimes improve model parameter estimates by many orders of magnitude. This book provides a clear exposition of the underlying concepts with many worked examples and problem sets. It also discusses implementation, including an introduction to Markov chain Monte-Carlo integration and linear and nonlinear model fitting. Particularly extensive coverage of spectral analysis (detecting and measuring periodic signals) includes a self-contained introduction to Fourier and discrete Fourier methods. There is a chapter devoted to Bayesian inference with Poisson sampling, and three chapters on frequentist methods help to bridge the gap between the frequentist and Bayesian approaches. Supporting Mathematica® notebooks with solutions to selected problems, additional worked examples, and a Mathematica tutorial are available at www.cambridge.org/9780521150125.