Author: Adriano Polpo
Publisher: Springer
ISBN: 9783319911427
Category : Mathematics
Languages : en
Pages : 304
Book Description
These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.
Bayesian Inference and Maximum Entropy Methods in Science and Engineering
Author: Adriano Polpo
Publisher: Springer
ISBN: 9783319911427
Category : Mathematics
Languages : en
Pages : 304
Book Description
These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.
Publisher: Springer
ISBN: 9783319911427
Category : Mathematics
Languages : en
Pages : 304
Book Description
These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.
Bayesian Inference and Maximum Entropy Methods in Science and Engineering
Author: Rainer Fischer
Publisher: A I P Press
ISBN:
Category : Mathematics
Languages : en
Pages : 632
Book Description
All papers were peer reviewed. Bayesian Inference and Maximum Entropy Methods in Science and Engineering provide a framework for analyzing ill-conditioned data. Maximum Entropy is a theoretical method to draw conclusions when little information is available. Bayesian probability theory provides a formalism for scientific reasoning by analyzing noisy or imcomplete data using prior knowledge.
Publisher: A I P Press
ISBN:
Category : Mathematics
Languages : en
Pages : 632
Book Description
All papers were peer reviewed. Bayesian Inference and Maximum Entropy Methods in Science and Engineering provide a framework for analyzing ill-conditioned data. Maximum Entropy is a theoretical method to draw conclusions when little information is available. Bayesian probability theory provides a formalism for scientific reasoning by analyzing noisy or imcomplete data using prior knowledge.
Maximum-Entropy and Bayesian Methods in Science and Engineering
Author: G. Erickson
Publisher: Springer Science & Business Media
ISBN: 9789027727930
Category : Mathematics
Languages : en
Pages : 338
Book Description
This volume has its origin in the Fifth, Sixth and Seventh Workshops on and Bayesian Methods in Applied Statistics", held at "Maximum-Entropy the University of Wyoming, August 5-8, 1985, and at Seattle University, August 5-8, 1986, and August 4-7, 1987. It was anticipated that the proceedings of these workshops would be combined, so most of the papers were not collected until after the seventh workshop. Because all of the papers in this volume are on foundations, it is believed that the con tents of this volume will be of lasting interest to the Bayesian community. The workshop was organized to bring together researchers from different fields to critically examine maximum-entropy and Bayesian methods in science and engineering as well as other disciplines. Some of the papers were chosen specifically to kindle interest in new areas that may offer new tools or insight to the reader or to stimulate work on pressing problems that appear to be ideally suited to the maximum-entropy or Bayesian method. A few papers presented at the workshops are not included in these proceedings, but a number of additional papers not presented at the workshop are included. In particular, we are delighted to make available Professor E. T. Jaynes' unpublished Stanford University Microwave Laboratory Report No. 421 "How Does the Brain Do Plausible Reasoning?" (dated August 1957). This is a beautiful, detailed tutorial on the Cox-Polya-Jaynes approach to Bayesian probability theory and the maximum-entropy principle.
Publisher: Springer Science & Business Media
ISBN: 9789027727930
Category : Mathematics
Languages : en
Pages : 338
Book Description
This volume has its origin in the Fifth, Sixth and Seventh Workshops on and Bayesian Methods in Applied Statistics", held at "Maximum-Entropy the University of Wyoming, August 5-8, 1985, and at Seattle University, August 5-8, 1986, and August 4-7, 1987. It was anticipated that the proceedings of these workshops would be combined, so most of the papers were not collected until after the seventh workshop. Because all of the papers in this volume are on foundations, it is believed that the con tents of this volume will be of lasting interest to the Bayesian community. The workshop was organized to bring together researchers from different fields to critically examine maximum-entropy and Bayesian methods in science and engineering as well as other disciplines. Some of the papers were chosen specifically to kindle interest in new areas that may offer new tools or insight to the reader or to stimulate work on pressing problems that appear to be ideally suited to the maximum-entropy or Bayesian method. A few papers presented at the workshops are not included in these proceedings, but a number of additional papers not presented at the workshop are included. In particular, we are delighted to make available Professor E. T. Jaynes' unpublished Stanford University Microwave Laboratory Report No. 421 "How Does the Brain Do Plausible Reasoning?" (dated August 1957). This is a beautiful, detailed tutorial on the Cox-Polya-Jaynes approach to Bayesian probability theory and the maximum-entropy principle.
Bayesian Inference and Maximum Entropy Methods in Science and Engineering
Author: Ali Mohammad-Djafari
Publisher: American Institute of Physics
ISBN:
Category : Mathematics
Languages : en
Pages : 616
Book Description
The MaxEnt workshops are devoted to Bayesian inference and maximum entropy methods in science and engineering. In addition, this workshop included all aspects of probabilistic inference, such as foundations, techniques, algorithms, and applications. All papers have been peer-reviewed.
Publisher: American Institute of Physics
ISBN:
Category : Mathematics
Languages : en
Pages : 616
Book Description
The MaxEnt workshops are devoted to Bayesian inference and maximum entropy methods in science and engineering. In addition, this workshop included all aspects of probabilistic inference, such as foundations, techniques, algorithms, and applications. All papers have been peer-reviewed.
Bayesian Inference and Maximum Entropy Methods in Science and Engineering
Author: Adriano Polpo
Publisher: Springer
ISBN: 3319911430
Category : Mathematics
Languages : en
Pages : 306
Book Description
These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.
Publisher: Springer
ISBN: 3319911430
Category : Mathematics
Languages : en
Pages : 306
Book Description
These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.
Bayesian Inference and Maximum Entropy Methods in Science and Engineering
Author:
Publisher:
ISBN:
Category : Bayesian statistical decision theory
Languages : en
Pages : 605
Book Description
Publisher:
ISBN:
Category : Bayesian statistical decision theory
Languages : en
Pages : 605
Book Description
Maximum Entropy and Bayesian Methods
Author: John Skilling
Publisher: Springer Science & Business Media
ISBN: 9401578605
Category : Mathematics
Languages : en
Pages : 521
Book Description
Cambridge, England, 1988
Publisher: Springer Science & Business Media
ISBN: 9401578605
Category : Mathematics
Languages : en
Pages : 521
Book Description
Cambridge, England, 1988
Bayesian Inference and Maximum Entropy Methods in Science and Engineering
Author: Ali Mohammad-Djafari
Publisher: American Institute of Physics
ISBN: 9780735408609
Category : Science
Languages : en
Pages : 0
Book Description
MaxEnt workshops are devoted to Bayesian inference and Maximum Entropy methods in sciences and engineering. This year's meeting was also encompassed all aspects of probabilistic inference such as foundations, techniques, algorithms and applications. As usual, we had tutorials, invited speakers, oral and poster presentations on the following subjects: Information theory, Probability theory, Quantum systems, Source separation, Information geometry, Bayesian networks, Parametric and Nonparametric Bayesian Data and Image processing, Bayesian computation, Entropy computation of Markovian and Semi-markovian process.
Publisher: American Institute of Physics
ISBN: 9780735408609
Category : Science
Languages : en
Pages : 0
Book Description
MaxEnt workshops are devoted to Bayesian inference and Maximum Entropy methods in sciences and engineering. This year's meeting was also encompassed all aspects of probabilistic inference such as foundations, techniques, algorithms and applications. As usual, we had tutorials, invited speakers, oral and poster presentations on the following subjects: Information theory, Probability theory, Quantum systems, Source separation, Information geometry, Bayesian networks, Parametric and Nonparametric Bayesian Data and Image processing, Bayesian computation, Entropy computation of Markovian and Semi-markovian process.
Bayesian Inference and Maximum Entropy Methods in Science and Engineering
Author: Adom Giffin
Publisher:
ISBN: 9780735414150
Category : Bayesian statistical decision theory
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9780735414150
Category : Bayesian statistical decision theory
Languages : en
Pages :
Book Description
Bayesian Inference and Maximum Entropy Methods in Science and Engineering
Author:
Publisher:
ISBN:
Category : Bayesian statistical decision theory
Languages : en
Pages : 410
Book Description
Publisher:
ISBN:
Category : Bayesian statistical decision theory
Languages : en
Pages : 410
Book Description