Author: Pijush Samui
Publisher: Elsevier
ISBN: 0128209011
Category : Science
Languages : en
Pages : 437
Book Description
Basics of Computational Geophysics provides a one-stop, collective resource for practitioners on the different techniques and models in geoscience, their practical applications, and case studies. The reference provides the modeling theory in an easy-to-read format that is verified with onsite models for specific regions and scenarios, including the use of big data and artificial intelligence. This book offers a platform whereby readers will learn theory, practical applications, and the comparison of real-world problems surrounding geomechanics, modeling and optimizations. - Covers various advanced computational techniques for solving different problems in geophysics, including the use of Big Data and artificial intelligence - Includes case studies that provide examples surrounding practical applications - Provides an assessment of the capabilities of commercial software
Basics of Computational Geophysics
Author: Pijush Samui
Publisher: Elsevier
ISBN: 0128209011
Category : Science
Languages : en
Pages : 437
Book Description
Basics of Computational Geophysics provides a one-stop, collective resource for practitioners on the different techniques and models in geoscience, their practical applications, and case studies. The reference provides the modeling theory in an easy-to-read format that is verified with onsite models for specific regions and scenarios, including the use of big data and artificial intelligence. This book offers a platform whereby readers will learn theory, practical applications, and the comparison of real-world problems surrounding geomechanics, modeling and optimizations. - Covers various advanced computational techniques for solving different problems in geophysics, including the use of Big Data and artificial intelligence - Includes case studies that provide examples surrounding practical applications - Provides an assessment of the capabilities of commercial software
Publisher: Elsevier
ISBN: 0128209011
Category : Science
Languages : en
Pages : 437
Book Description
Basics of Computational Geophysics provides a one-stop, collective resource for practitioners on the different techniques and models in geoscience, their practical applications, and case studies. The reference provides the modeling theory in an easy-to-read format that is verified with onsite models for specific regions and scenarios, including the use of big data and artificial intelligence. This book offers a platform whereby readers will learn theory, practical applications, and the comparison of real-world problems surrounding geomechanics, modeling and optimizations. - Covers various advanced computational techniques for solving different problems in geophysics, including the use of Big Data and artificial intelligence - Includes case studies that provide examples surrounding practical applications - Provides an assessment of the capabilities of commercial software
Computational Methods for Geodynamics
Author: Alik Ismail-Zadeh
Publisher: Cambridge University Press
ISBN: 1139489356
Category : Science
Languages : en
Pages : 333
Book Description
Written as both a textbook and a handy reference, this text deliberately avoids complex mathematics assuming only basic familiarity with geodynamic theory and calculus. Here, the authors have brought together the key numerical techniques for geodynamic modeling, demonstrations of how to solve problems including lithospheric deformation, mantle convection and the geodynamo. Building from a discussion of the fundamental principles of mathematical and numerical modeling, the text moves into critical examinations of each of the different techniques before concluding with a detailed analysis of specific geodynamic applications. Key differences between methods and their respective limitations are also discussed - showing readers when and how to apply a particular method in order to produce the most accurate results. This is an essential text for advanced courses on numerical and computational modeling in geodynamics and geophysics, and an invaluable resource for researchers looking to master cutting-edge techniques. Links to supplementary computer codes are available online.
Publisher: Cambridge University Press
ISBN: 1139489356
Category : Science
Languages : en
Pages : 333
Book Description
Written as both a textbook and a handy reference, this text deliberately avoids complex mathematics assuming only basic familiarity with geodynamic theory and calculus. Here, the authors have brought together the key numerical techniques for geodynamic modeling, demonstrations of how to solve problems including lithospheric deformation, mantle convection and the geodynamo. Building from a discussion of the fundamental principles of mathematical and numerical modeling, the text moves into critical examinations of each of the different techniques before concluding with a detailed analysis of specific geodynamic applications. Key differences between methods and their respective limitations are also discussed - showing readers when and how to apply a particular method in order to produce the most accurate results. This is an essential text for advanced courses on numerical and computational modeling in geodynamics and geophysics, and an invaluable resource for researchers looking to master cutting-edge techniques. Links to supplementary computer codes are available online.
Fundamentals of Computational Geoscience
Author: Chongbin Zhao
Publisher: Springer Science & Business Media
ISBN: 3540897437
Category : Science
Languages : en
Pages : 248
Book Description
Geoscience is a fundamental natural science discipline dealing with the origin, evolutionary history and behaviour of the planet Earth. As a result of its complicated and complex nature, the Earth system not only provides the necessary materials and environment for mankind to live, but also brings many types of natural disasters, such as earthquakes, volcanic eruptions, tsunamis, ?oods and tornadoes, to mention just a few. With the ever-increasing demand for improving our living standards, it has been recognized that the existing natural resources will be exhausted in the near future and that our living environments are, in fact, deteriorating. To maintain the sustainable development of our living standards and the further improvement of our living environments, an inevitable and challenging task that geoscientists are now confronting is how accurately to predict not only the occurrences of these natural disasters, but also the locations of large concealed natural resources in the deep Earth. For this reason, geoscientists must study the processes, rules and laws, by which the Earth system operates, instead of simply describing and observing g- science phenomena.
Publisher: Springer Science & Business Media
ISBN: 3540897437
Category : Science
Languages : en
Pages : 248
Book Description
Geoscience is a fundamental natural science discipline dealing with the origin, evolutionary history and behaviour of the planet Earth. As a result of its complicated and complex nature, the Earth system not only provides the necessary materials and environment for mankind to live, but also brings many types of natural disasters, such as earthquakes, volcanic eruptions, tsunamis, ?oods and tornadoes, to mention just a few. With the ever-increasing demand for improving our living standards, it has been recognized that the existing natural resources will be exhausted in the near future and that our living environments are, in fact, deteriorating. To maintain the sustainable development of our living standards and the further improvement of our living environments, an inevitable and challenging task that geoscientists are now confronting is how accurately to predict not only the occurrences of these natural disasters, but also the locations of large concealed natural resources in the deep Earth. For this reason, geoscientists must study the processes, rules and laws, by which the Earth system operates, instead of simply describing and observing g- science phenomena.
Computational Geosciences with Mathematica
Author: William Haneberg
Publisher: Springer Science & Business Media
ISBN: 3642185541
Category : Science
Languages : en
Pages : 386
Book Description
Computational Geosciences with Mathematica is the only book written by a geologist specifically to show geologists and geoscientists how to use Mathematica to formulate and solve problems. It spans a broad range of geologic and mathematical topics, which are drawn from the author's extensive experience in research, consulting, and teaching. The reference and text leads readers step-by-step through geologic applications such as custom graphics programming, data input and output, linear and differential equations, linear and nonlinear regression, Monte Carlo simulation, time series and image analysis, and the visualization and analysis of geologic surfaces. It is packed with actual Mathematica output and includes boxed Computer Notes with tips and exploration suggestions.
Publisher: Springer Science & Business Media
ISBN: 3642185541
Category : Science
Languages : en
Pages : 386
Book Description
Computational Geosciences with Mathematica is the only book written by a geologist specifically to show geologists and geoscientists how to use Mathematica to formulate and solve problems. It spans a broad range of geologic and mathematical topics, which are drawn from the author's extensive experience in research, consulting, and teaching. The reference and text leads readers step-by-step through geologic applications such as custom graphics programming, data input and output, linear and differential equations, linear and nonlinear regression, Monte Carlo simulation, time series and image analysis, and the visualization and analysis of geologic surfaces. It is packed with actual Mathematica output and includes boxed Computer Notes with tips and exploration suggestions.
Fundamentals of Geophysics
Author: William Lowrie
Publisher: Cambridge University Press
ISBN: 1139465953
Category : Science
Languages : en
Pages : 11
Book Description
This second edition of Fundamentals of Geophysics has been completely revised and updated, and is the ideal geophysics textbook for undergraduate students of geoscience with an introductory level of knowledge in physics and mathematics. It gives a comprehensive treatment of the fundamental principles of each major branch of geophysics, and presents geophysics within the wider context of plate tectonics, geodynamics and planetary science. Basic principles are explained with the aid of numerous figures and step-by-step mathematical treatments, and important geophysical results are illustrated with examples from the scientific literature. Text-boxes are used for auxiliary explanations and to handle topics of interest for more advanced students. This new edition also includes review questions at the end of each chapter to help assess the reader's understanding of the topics covered and quantitative exercises for more thorough evaluation. Solutions to the exercises and electronic copies of the figures are available at www.cambridge.org/9780521859028.
Publisher: Cambridge University Press
ISBN: 1139465953
Category : Science
Languages : en
Pages : 11
Book Description
This second edition of Fundamentals of Geophysics has been completely revised and updated, and is the ideal geophysics textbook for undergraduate students of geoscience with an introductory level of knowledge in physics and mathematics. It gives a comprehensive treatment of the fundamental principles of each major branch of geophysics, and presents geophysics within the wider context of plate tectonics, geodynamics and planetary science. Basic principles are explained with the aid of numerous figures and step-by-step mathematical treatments, and important geophysical results are illustrated with examples from the scientific literature. Text-boxes are used for auxiliary explanations and to handle topics of interest for more advanced students. This new edition also includes review questions at the end of each chapter to help assess the reader's understanding of the topics covered and quantitative exercises for more thorough evaluation. Solutions to the exercises and electronic copies of the figures are available at www.cambridge.org/9780521859028.
Computational Methods in Geophysical Electromagnetics
Author: Eldad Haber
Publisher: SIAM
ISBN: 1611973805
Category : Science
Languages : en
Pages : 148
Book Description
This monograph provides a framework for students and practitioners who are working on the solution of electromagnetic imaging in geophysics. Bridging the gap between theory and practical applied material (for example, inverse and forward problems), it provides a simple explanation of finite volume discretization, basic concepts in solving inverse problems through optimization, a summary of applied electromagnetics methods, and MATLAB??code for efficient computation.
Publisher: SIAM
ISBN: 1611973805
Category : Science
Languages : en
Pages : 148
Book Description
This monograph provides a framework for students and practitioners who are working on the solution of electromagnetic imaging in geophysics. Bridging the gap between theory and practical applied material (for example, inverse and forward problems), it provides a simple explanation of finite volume discretization, basic concepts in solving inverse problems through optimization, a summary of applied electromagnetics methods, and MATLAB??code for efficient computation.
Computational Geo-Electromagnetics
Author: Viacheslav V. Spichak
Publisher: Elsevier
ISBN: 0128196319
Category : Science
Languages : en
Pages : 462
Book Description
Computational Geo-Electromagnetics: Methods, Models, and Forecasts, Volume Five in the Computational Geophysics series, is devoted to techniques for building of geoelectrical models from electromagnetic data, featuring Bayesian statistical analysis and neural network algorithms. These models are applied to studying the geoelectrical structure of famous volcanoes (i.e., Vesuvio, Kilauea, Elbrus, Komagatake, Hengill) and geothermal zones (i.e., Travale, Italy; Soultz-sous-Forets, Elsace). Methodological recommendations are given on electromagnetic sounding of faults as well as geothermal and hydrocarbon reservoirs. Techniques for forecasting of petrophysical properties from the electrical resistivity as proxy parameter are also considered. Computational Geo-Electromagnetics: Methods, Models, and Forecasts offers techniques and algorithms for building geoelectrical models under conditions of rare or irregularly distributed EM data and/or lack of prior geological and geophysical information. This volume also includes methodological guidelines on interpretation of electromagnetic sounding data depending on goals of the study. Finally, it details computational algorithms for using electrical resistivity for properties beyond boreholes.
Publisher: Elsevier
ISBN: 0128196319
Category : Science
Languages : en
Pages : 462
Book Description
Computational Geo-Electromagnetics: Methods, Models, and Forecasts, Volume Five in the Computational Geophysics series, is devoted to techniques for building of geoelectrical models from electromagnetic data, featuring Bayesian statistical analysis and neural network algorithms. These models are applied to studying the geoelectrical structure of famous volcanoes (i.e., Vesuvio, Kilauea, Elbrus, Komagatake, Hengill) and geothermal zones (i.e., Travale, Italy; Soultz-sous-Forets, Elsace). Methodological recommendations are given on electromagnetic sounding of faults as well as geothermal and hydrocarbon reservoirs. Techniques for forecasting of petrophysical properties from the electrical resistivity as proxy parameter are also considered. Computational Geo-Electromagnetics: Methods, Models, and Forecasts offers techniques and algorithms for building geoelectrical models under conditions of rare or irregularly distributed EM data and/or lack of prior geological and geophysical information. This volume also includes methodological guidelines on interpretation of electromagnetic sounding data depending on goals of the study. Finally, it details computational algorithms for using electrical resistivity for properties beyond boreholes.
Computational Seismology
Author: Heiner Igel
Publisher: Oxford University Press
ISBN: 0198717407
Category : Nature
Languages : en
Pages : 340
Book Description
An introductory text to a range of numerical methods used today to simulate time-dependent processes in Earth science, physics, engineering and many other fields. It looks under the hood of current simulation technology and provides guidelines on what to look out for when carrying out sophisticated simulation tasks.
Publisher: Oxford University Press
ISBN: 0198717407
Category : Nature
Languages : en
Pages : 340
Book Description
An introductory text to a range of numerical methods used today to simulate time-dependent processes in Earth science, physics, engineering and many other fields. It looks under the hood of current simulation technology and provides guidelines on what to look out for when carrying out sophisticated simulation tasks.
Seismic Inversion
Author: Gerard T. Schuster
Publisher: SEG Books
ISBN: 156080341X
Category : Science
Languages : en
Pages : 377
Book Description
This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. Seismic Inversion will be of benefit to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation. For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided. To truly understand the nuances of seismic inversion, we have to actively practice what we preach (or teach). Therefore, computational labs are provided for most of the chapters, and some field data labs are given as well.
Publisher: SEG Books
ISBN: 156080341X
Category : Science
Languages : en
Pages : 377
Book Description
This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. Seismic Inversion will be of benefit to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation. For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided. To truly understand the nuances of seismic inversion, we have to actively practice what we preach (or teach). Therefore, computational labs are provided for most of the chapters, and some field data labs are given as well.
Potential Theory in Applied Geophysics
Author: Kalyan Kumar Roy
Publisher: Springer Science & Business Media
ISBN: 354072334X
Category : Science
Languages : en
Pages : 661
Book Description
This book introduces the principles of gravitational, magnetic, electrostatic, direct current electrical and electromagnetic fields, with detailed solutions of Laplace and electromagnetic wave equations by the method of separation of variables. Discussion includes behaviours of the scalar and vector potential and the nature of the solutions of these boundary value problems, along with the use of complex variables and conformal transformation, Green's theorem, Green's formula and Green's functions.
Publisher: Springer Science & Business Media
ISBN: 354072334X
Category : Science
Languages : en
Pages : 661
Book Description
This book introduces the principles of gravitational, magnetic, electrostatic, direct current electrical and electromagnetic fields, with detailed solutions of Laplace and electromagnetic wave equations by the method of separation of variables. Discussion includes behaviours of the scalar and vector potential and the nature of the solutions of these boundary value problems, along with the use of complex variables and conformal transformation, Green's theorem, Green's formula and Green's functions.