Author: Daniel I. A. Cohen
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 318
Book Description
Basic Techniques of Combinatorial Theory
Author: Daniel I. A. Cohen
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 318
Book Description
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 318
Book Description
Combinatorial Methods
Author: Alexander Mikhalev
Publisher: Springer Science & Business Media
ISBN: 9780387405629
Category : Mathematics
Languages : en
Pages : 336
Book Description
The main purpose of this book is to show how ideas from combinatorial group theory have spread to two other areas of mathematics: the theory of Lie algebras and affine algebraic geometry. Some of these ideas, in turn, came to combinatorial group theory from low-dimensional topology in the beginning of the 20th Century. This book is divided into three fairly independent parts. Part I provides a brief exposition of several classical techniques in combinatorial group theory, namely, methods of Nielsen, Whitehead, and Tietze. Part II contains the main focus of the book. Here the authors show how the aforementioned techniques of combinatorial group theory found their way into affine algebraic geometry, a fascinating area of mathematics that studies polynomials and polynomial mappings. Part III illustrates how ideas from combinatorial group theory contributed to the theory of free algebras. The focus here is on Schreier varieties of algebras (a variety of algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free in the same variety of algebras).
Publisher: Springer Science & Business Media
ISBN: 9780387405629
Category : Mathematics
Languages : en
Pages : 336
Book Description
The main purpose of this book is to show how ideas from combinatorial group theory have spread to two other areas of mathematics: the theory of Lie algebras and affine algebraic geometry. Some of these ideas, in turn, came to combinatorial group theory from low-dimensional topology in the beginning of the 20th Century. This book is divided into three fairly independent parts. Part I provides a brief exposition of several classical techniques in combinatorial group theory, namely, methods of Nielsen, Whitehead, and Tietze. Part II contains the main focus of the book. Here the authors show how the aforementioned techniques of combinatorial group theory found their way into affine algebraic geometry, a fascinating area of mathematics that studies polynomials and polynomial mappings. Part III illustrates how ideas from combinatorial group theory contributed to the theory of free algebras. The focus here is on Schreier varieties of algebras (a variety of algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free in the same variety of algebras).
Combinatorics
Author: Russell Merris
Publisher: John Wiley & Sons
ISBN: 047145849X
Category : Mathematics
Languages : en
Pages : 572
Book Description
A mathematical gem–freshly cleaned and polished This book is intended to be used as the text for a first course in combinatorics. the text has been shaped by two goals, namely, to make complex mathematics accessible to students with a wide range of abilities, interests, and motivations; and to create a pedagogical tool, useful to the broad spectrum of instructors who bring a variety of perspectives and expectations to such a course. Features retained from the first edition: Lively and engaging writing style Timely and appropriate examples Numerous well-chosen exercises Flexible modular format Optional sections and appendices Highlights of Second Edition enhancements: Smoothed and polished exposition, with a sharpened focus on key ideas Expanded discussion of linear codes New optional section on algorithms Greatly expanded hints and answers section Many new exercises and examples
Publisher: John Wiley & Sons
ISBN: 047145849X
Category : Mathematics
Languages : en
Pages : 572
Book Description
A mathematical gem–freshly cleaned and polished This book is intended to be used as the text for a first course in combinatorics. the text has been shaped by two goals, namely, to make complex mathematics accessible to students with a wide range of abilities, interests, and motivations; and to create a pedagogical tool, useful to the broad spectrum of instructors who bring a variety of perspectives and expectations to such a course. Features retained from the first edition: Lively and engaging writing style Timely and appropriate examples Numerous well-chosen exercises Flexible modular format Optional sections and appendices Highlights of Second Edition enhancements: Smoothed and polished exposition, with a sharpened focus on key ideas Expanded discussion of linear codes New optional section on algorithms Greatly expanded hints and answers section Many new exercises and examples
Combinatorial techniques
Author: Sharad S. Sane
Publisher: Hindustan Book Agency
ISBN: 9789380250489
Category : Mathematics
Languages : en
Pages : 0
Book Description
This is a basic text on combinatorics that deals with all the three aspects of the discipline: tricks, techniques and theory, and attempts to blend them. The book has several distinctive features. Probability and random variables with their interconnections to permutations are discussed. The theme of parity has been specially included and it covers applications ranging from solving the Nim game to the quadratic reciprocity law. Chapters related to geometry include triangulations and Sperner's theorem, classification of regular polytopes, tilings and an introduction to the Eulcidean Ramsey theory. Material on group actions covers Sylow theory, automorphism groups and a classification of finite subgroups of orthogonal groups. All chapters have a large number of exercises with varying degrees of difficulty, ranging from material suitable for Mathematical Olympiads to research.
Publisher: Hindustan Book Agency
ISBN: 9789380250489
Category : Mathematics
Languages : en
Pages : 0
Book Description
This is a basic text on combinatorics that deals with all the three aspects of the discipline: tricks, techniques and theory, and attempts to blend them. The book has several distinctive features. Probability and random variables with their interconnections to permutations are discussed. The theme of parity has been specially included and it covers applications ranging from solving the Nim game to the quadratic reciprocity law. Chapters related to geometry include triangulations and Sperner's theorem, classification of regular polytopes, tilings and an introduction to the Eulcidean Ramsey theory. Material on group actions covers Sylow theory, automorphism groups and a classification of finite subgroups of orthogonal groups. All chapters have a large number of exercises with varying degrees of difficulty, ranging from material suitable for Mathematical Olympiads to research.
Combinatorial Theory
Author: Martin Aigner
Publisher: Springer Science & Business Media
ISBN: 3642591019
Category : Mathematics
Languages : en
Pages : 493
Book Description
This book offers a well-organized, easy-to-follow introduction to combinatorial theory, with examples, notes and exercises. ". . . a very good introduction to combinatorics. This book can warmly be recommended first of all to students interested in combinatorics." Publicationes Mathematicae Debrecen
Publisher: Springer Science & Business Media
ISBN: 3642591019
Category : Mathematics
Languages : en
Pages : 493
Book Description
This book offers a well-organized, easy-to-follow introduction to combinatorial theory, with examples, notes and exercises. ". . . a very good introduction to combinatorics. This book can warmly be recommended first of all to students interested in combinatorics." Publicationes Mathematicae Debrecen
Combinatorial Set Theory
Author: Lorenz J. Halbeisen
Publisher: Springer
ISBN: 3319602314
Category : Mathematics
Languages : en
Pages : 586
Book Description
This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.
Publisher: Springer
ISBN: 3319602314
Category : Mathematics
Languages : en
Pages : 586
Book Description
This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.
Analytic Combinatorics
Author: Philippe Flajolet
Publisher: Cambridge University Press
ISBN: 1139477161
Category : Mathematics
Languages : en
Pages : 825
Book Description
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
Publisher: Cambridge University Press
ISBN: 1139477161
Category : Mathematics
Languages : en
Pages : 825
Book Description
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
CRC Concise Encyclopedia of Mathematics
Author: Eric W. Weisstein
Publisher: CRC Press
ISBN: 1420035223
Category : Mathematics
Languages : en
Pages : 3253
Book Description
Upon publication, the first edition of the CRC Concise Encyclopedia of Mathematics received overwhelming accolades for its unparalleled scope, readability, and utility. It soon took its place among the top selling books in the history of Chapman & Hall/CRC, and its popularity continues unabated. Yet also unabated has been the d
Publisher: CRC Press
ISBN: 1420035223
Category : Mathematics
Languages : en
Pages : 3253
Book Description
Upon publication, the first edition of the CRC Concise Encyclopedia of Mathematics received overwhelming accolades for its unparalleled scope, readability, and utility. It soon took its place among the top selling books in the history of Chapman & Hall/CRC, and its popularity continues unabated. Yet also unabated has been the d
Lessons in Play
Author: Michael Albert
Publisher: CRC Press
ISBN: 1439864373
Category : Mathematics
Languages : en
Pages : 298
Book Description
Combinatorial games are games of pure strategy involving two players, with perfect information and no element of chance. Starting from the very basics of gameplay and strategy, the authors cover a wide range of topics, from game algebra to special classes of games. Classic techniques are introduced and applied in novel ways to analyze both old and
Publisher: CRC Press
ISBN: 1439864373
Category : Mathematics
Languages : en
Pages : 298
Book Description
Combinatorial games are games of pure strategy involving two players, with perfect information and no element of chance. Starting from the very basics of gameplay and strategy, the authors cover a wide range of topics, from game algebra to special classes of games. Classic techniques are introduced and applied in novel ways to analyze both old and
Introduction to Combinatorial Theory
Author: R. C. Bose
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 264
Book Description
A ``hands-on'' constructive and computational approach to combinatorial topics with real-life modern applications. Provides a simple treatment of the subject. Introduces topics such as counting, designs and graphs. The notation is standard and kept to a minimum. Chapters end with historical remarks and suggestions for further reading.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 264
Book Description
A ``hands-on'' constructive and computational approach to combinatorial topics with real-life modern applications. Provides a simple treatment of the subject. Introduces topics such as counting, designs and graphs. The notation is standard and kept to a minimum. Chapters end with historical remarks and suggestions for further reading.