Basic Structured Grid Generation

Basic Structured Grid Generation PDF Author: M Farrashkhalvat
Publisher: Elsevier
ISBN: 0080472087
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
Finite element, finite volume and finite difference methods use grids to solve the numerous differential equations that arise in the modelling of physical systems in engineering. Structured grid generation forms an integral part of the solution of these procedures. Basic Structured Grid Generation provides the necessary mathematical foundation required for the successful generation of boundary-conforming grids and will be an important resource for postgraduate and practising engineers.The treatment of structured grid generation starts with basic geometry and tensor analysis before moving on to identify the variety of approaches that can be employed in the generation of structured grids. The book then introduces unstructured grid generation by explaining the basics of Delaunay triangulation and advancing front techniques. - A practical, straightforward approach to this complex subject for engineers and students. - A key technique for modelling physical systems.

Basic Structured Grid Generation

Basic Structured Grid Generation PDF Author: M Farrashkhalvat
Publisher: Elsevier
ISBN: 0080472087
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
Finite element, finite volume and finite difference methods use grids to solve the numerous differential equations that arise in the modelling of physical systems in engineering. Structured grid generation forms an integral part of the solution of these procedures. Basic Structured Grid Generation provides the necessary mathematical foundation required for the successful generation of boundary-conforming grids and will be an important resource for postgraduate and practising engineers.The treatment of structured grid generation starts with basic geometry and tensor analysis before moving on to identify the variety of approaches that can be employed in the generation of structured grids. The book then introduces unstructured grid generation by explaining the basics of Delaunay triangulation and advancing front techniques. - A practical, straightforward approach to this complex subject for engineers and students. - A key technique for modelling physical systems.

Handbook of Grid Generation

Handbook of Grid Generation PDF Author: Joe F. Thompson
Publisher: CRC Press
ISBN: 9781420050349
Category : Technology & Engineering
Languages : en
Pages : 1136

Get Book Here

Book Description
Handbook of Grid Generation addresses the use of grids (meshes) in the numerical solutions of partial differential equations by finite elements, finite volume, finite differences, and boundary elements. Four parts divide the chapters: structured grids, unstructured girds, surface definition, and adaption/quality. An introduction to each section provides a roadmap through the material. This handbook covers: Fundamental concepts and approaches Grid generation process Essential mathematical elements from tensor analysis and differential geometry, particularly relevant to curves and surfaces Cells of any shape - Cartesian, structured curvilinear coordinates, unstructured tetrahedra, unstructured hexahedra, or various combinations Separate grids overlaid on one another, communicating data through interpolation Moving boundaries and internal interfaces in the field Resolving gradients and controlling solution error Grid generation codes, both commercial and freeware, as well as representative and illustrative grid configurations Handbook of Grid Generation contains 37 chapters as well as contributions from more than 100 experts from around the world, comprehensively evaluating this expanding field and providing a fundamental orientation for practitioners.

Grid Generation Methods

Grid Generation Methods PDF Author: Vladimir D. Liseikin
Publisher: Springer Science & Business Media
ISBN: 9048129125
Category : Science
Languages : en
Pages : 390

Get Book Here

Book Description
This text is an introduction to methods of grid generation technology in scientific computing. Special attention is given to methods developed by the author for the treatment of singularly-perturbed equations, e.g. in modeling high Reynolds number flows. Functionals of conformality, orthogonality, energy and alignment are discussed.

Fundamentals of Grid Generation

Fundamentals of Grid Generation PDF Author: Patrick Knupp
Publisher: CRC Press
ISBN: 0429605307
Category : Mathematics
Languages : en
Pages : 312

Get Book Here

Book Description
Fundamentals of Grid Generation is an outstanding text/reference designed to introduce students in applied mathematics, mechanical engineering, and aerospace engineering to structured grid generation. It provides excellent reference material for practitioners in industry, and it presents new concepts to researchers. Readers will learn what boundary-conforming grids are, how to generate them, and how to devise their own methods. The text is written in a clear, intuitive style that doesn't get bogged down in unnecessary abstractions. Topics covered include planar, surface, and 3-D grid generation; numerical techniques; solution adaptivity; the finite volume approach to discretization of hosted equations; concepts from elementary differential geometry; and the transformation of differential operators to general coordinate systems. The book also reviews the literature on algebraic, conformal, orthogonal, hyperbolic, parabolic, elliptic, biharmonic, and variational approaches to grid generation. This unique volume closes with the author's original methods of variational grid generation.

A Computational Differential Geometry Approach to Grid Generation

A Computational Differential Geometry Approach to Grid Generation PDF Author: Vladimir D. Liseikin
Publisher: Springer Science & Business Media
ISBN: 3540342362
Category : Science
Languages : en
Pages : 301

Get Book Here

Book Description
The process of breaking up a physical domain into smaller sub-domains, known as meshing, facilitates the numerical solution of partial differential equations used to simulate physical systems. In an updated and expanded Second Edition, this monograph gives a detailed treatment based on the numerical solution of inverted Beltramian and diffusion equations with respect to monitor metrics for generating both structured and unstructured grids in domains and on surfaces.

Computational Fluid Dynamics

Computational Fluid Dynamics PDF Author: Jiri Blazek
Publisher: Elsevier
ISBN: 0080529674
Category : Science
Languages : en
Pages : 491

Get Book Here

Book Description
Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies.

Finite Element Mesh Generation

Finite Element Mesh Generation PDF Author: Daniel S.H. Lo
Publisher: CRC Press
ISBN: 041569048X
Category : Technology & Engineering
Languages : en
Pages : 676

Get Book Here

Book Description
Highlights the Progression of Meshing Technologies and Their Applications Finite Element Mesh Generation provides a concise and comprehensive guide to the application of finite element mesh generation over 2D domains, curved surfaces, and 3D space. Organised according to the geometry and dimension of the problem domains, it develops from the basic meshing algorithms to the most advanced schemes to deal with problems with specific requirements such as boundary conformity, adaptive and anisotropic elements, shape qualities, and mesh optimization. It sets out the fundamentals of popular techniques, including: Delaunay triangulation Advancing-front (ADF) approach Quadtree/Octree techniques Refinement and optimization-based strategies From the geometrical and the topological aspects and their associated operations and inter-relationships, each approach is vividly described and illustrated with examples. Beyond the algorithms, the book also explores the practice of using metric tensor and surface curvatures for generating anisotropic meshes on parametric space. It presents results from research including 3D anisotropic meshing, mesh generation over unbounded domains, meshing by means of intersection, re-meshing by Delaunay-ADF approach, mesh refinement and optimization, generation of hexahedral meshes, and large scale and parallel meshing, along with innovative unpublished meshing methods. The author provides illustrations of major meshing algorithms, pseudo codes, and programming codes in C++ or FORTRAN. Geared toward research centers, universities, and engineering companies, Finite Element Mesh Generation describes mesh generation methods and fundamental techniques, and also serves as a valuable reference for laymen and experts alike.

Mesh Enhancement

Mesh Enhancement PDF Author: Glen A. Hansen
Publisher: Imperial College Press
ISBN: 186094681X
Category : Science
Languages : en
Pages : 534

Get Book Here

Book Description
This book focuses on mesh (grid) enhancement techniques specifically, the use of selected elliptic methods for both structuredand unstructured meshes associated with computational physicsapplications. Mesh enhancement is the process in which an existingmesh is modified to better meet the requirements of the physicsapplication.

Introduction to Computational Fluid Dynamics

Introduction to Computational Fluid Dynamics PDF Author: Anil W. Date
Publisher: Cambridge University Press
ISBN: 9781139446839
Category : Technology & Engineering
Languages : en
Pages : 408

Get Book Here

Book Description
Introduction to Computational Fluid Dynamics is a textbook for advanced undergraduate and first year graduate students in mechanical, aerospace and chemical engineering. The book emphasizes understanding CFD through physical principles and examples. The author follows a consistent philosophy of control volume formulation of the fundamental laws of fluid motion and energy transfer, and introduces a novel notion of 'smoothing pressure correction' for solution of flow equations on collocated grids within the framework of the well-known SIMPLE algorithm. The subject matter is developed by considering pure conduction/diffusion, convective transport in 2-dimensional boundary layers and in fully elliptic flow situations and phase-change problems in succession. The book includes chapters on discretization of equations for transport of mass, momentum and energy on Cartesian, structured curvilinear and unstructured meshes, solution of discretised equations, numerical grid generation and convergence enhancement. Practising engineers will find this particularly useful for reference and for continuing education.

Grid Generation Methods

Grid Generation Methods PDF Author: Vladimir D. Liseikin
Publisher: Springer Science & Business Media
ISBN: 9783540656869
Category : Science
Languages : en
Pages : 388

Get Book Here

Book Description
This text is an introduction to methods of grid generation technology in scientific computing. Special attention is given to methods developed by the author for the treatment of singularly-perturbed equations, e.g. in modeling high Reynolds number flows. Functionals of conformality, orthogonality, energy and alignment are discussed.