Author: Michael C. Gemignani
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 280
Book Description
Basic Concepts of Mathematics and Logic
Author: Michael C. Gemignani
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 280
Book Description
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 280
Book Description
Basic Mathematics
Author: Serge Lang
Publisher:
ISBN: 9783540967873
Category : Mathematics
Languages : en
Pages : 475
Book Description
Publisher:
ISBN: 9783540967873
Category : Mathematics
Languages : en
Pages : 475
Book Description
Mathematical Logic and Formalized Theories
Author: Robert L. Rogers
Publisher: Elsevier
ISBN: 1483257975
Category : Mathematics
Languages : en
Pages : 248
Book Description
Mathematical Logic and Formalized Theories: A Survey of Basic Concepts and Results focuses on basic concepts and results of mathematical logic and the study of formalized theories. The manuscript first elaborates on sentential logic and first-order predicate logic. Discussions focus on first-order predicate logic with identity and operation symbols, first-order predicate logic with identity, completeness theorems, elementary theories, deduction theorem, interpretations, truth, and validity, sentential connectives, and tautologies. The text then tackles second-order predicate logic, as well as second-order theories, theory of definition, and second-order predicate logic F2. The publication takes a look at natural and real numbers, incompleteness, and the axiomatic set theory. Topics include paradoxes, recursive functions and relations, Gödel's first incompleteness theorem, axiom of choice, metamathematics of R and elementary algebra, and metamathematics of N. The book is a valuable reference for mathematicians and researchers interested in mathematical logic and formalized theories.
Publisher: Elsevier
ISBN: 1483257975
Category : Mathematics
Languages : en
Pages : 248
Book Description
Mathematical Logic and Formalized Theories: A Survey of Basic Concepts and Results focuses on basic concepts and results of mathematical logic and the study of formalized theories. The manuscript first elaborates on sentential logic and first-order predicate logic. Discussions focus on first-order predicate logic with identity and operation symbols, first-order predicate logic with identity, completeness theorems, elementary theories, deduction theorem, interpretations, truth, and validity, sentential connectives, and tautologies. The text then tackles second-order predicate logic, as well as second-order theories, theory of definition, and second-order predicate logic F2. The publication takes a look at natural and real numbers, incompleteness, and the axiomatic set theory. Topics include paradoxes, recursive functions and relations, Gödel's first incompleteness theorem, axiom of choice, metamathematics of R and elementary algebra, and metamathematics of N. The book is a valuable reference for mathematicians and researchers interested in mathematical logic and formalized theories.
Introduction to Mathematical Logic
Author: Elliot Mendelsohn
Publisher: Springer Science & Business Media
ISBN: 1461572886
Category : Science
Languages : en
Pages : 351
Book Description
This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.
Publisher: Springer Science & Business Media
ISBN: 1461572886
Category : Science
Languages : en
Pages : 351
Book Description
This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.
Basic Concepts of Mathematics and Logic
Author: Michael C. Gemignani
Publisher: Courier Corporation
ISBN: 0486435067
Category : Mathematics
Languages : en
Pages : 290
Book Description
This text emphasizes logic and the theory of sets. Students who take no further courses in the field will find it an excellent resource for developing an appreciation for the nature of mathematics. Others will discover the foundations for future studies — set theory, logic, counting, numbers, functions, and more. 1968 edition. 43 figures. 25 tables.
Publisher: Courier Corporation
ISBN: 0486435067
Category : Mathematics
Languages : en
Pages : 290
Book Description
This text emphasizes logic and the theory of sets. Students who take no further courses in the field will find it an excellent resource for developing an appreciation for the nature of mathematics. Others will discover the foundations for future studies — set theory, logic, counting, numbers, functions, and more. 1968 edition. 43 figures. 25 tables.
An Introduction to Mathematical Logic
Author: Richard E. Hodel
Publisher: Courier Corporation
ISBN: 0486497852
Category : Mathematics
Languages : en
Pages : 514
Book Description
This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.
Publisher: Courier Corporation
ISBN: 0486497852
Category : Mathematics
Languages : en
Pages : 514
Book Description
This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.
Introduction to Mathematical Logic ...
Author: Alonzo Church
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 146
Book Description
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 146
Book Description
Fundamental Concepts of Mathematical Logic
Author: Dr. Yogeesh N
Publisher: Insta Publishing
ISBN: 9390719399
Category : Education
Languages : en
Pages : 114
Book Description
N/A
Publisher: Insta Publishing
ISBN: 9390719399
Category : Education
Languages : en
Pages : 114
Book Description
N/A
Mathematical Logic
Author: Roman Kossak
Publisher: Springer
ISBN: 3319972987
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Its first part, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. The exposition does not assume any prerequisites; it is rigorous, but as informal as possible. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. Although more advanced, this second part is accessible to the reader who is either already familiar with basic mathematical logic, or has carefully read the first part of the book. Classical developments in model theory, including the Compactness Theorem and its uses, are discussed. Other topics include tameness, minimality, and order minimality of structures. The book can be used as an introduction to model theory, but unlike standard texts, it does not require familiarity with abstract algebra. This book will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.
Publisher: Springer
ISBN: 3319972987
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Its first part, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. The exposition does not assume any prerequisites; it is rigorous, but as informal as possible. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. Although more advanced, this second part is accessible to the reader who is either already familiar with basic mathematical logic, or has carefully read the first part of the book. Classical developments in model theory, including the Compactness Theorem and its uses, are discussed. Other topics include tameness, minimality, and order minimality of structures. The book can be used as an introduction to model theory, but unlike standard texts, it does not require familiarity with abstract algebra. This book will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.
Concepts of Modern Mathematics
Author: Ian Stewart
Publisher: Courier Corporation
ISBN: 0486134954
Category : Mathematics
Languages : en
Pages : 367
Book Description
In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.
Publisher: Courier Corporation
ISBN: 0486134954
Category : Mathematics
Languages : en
Pages : 367
Book Description
In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.