Automorphic Forms and the Picard Number of an Elliptic Surface

Automorphic Forms and the Picard Number of an Elliptic Surface PDF Author: Peter F. Stiller
Publisher: Springer Science & Business Media
ISBN: 3322907082
Category : Technology & Engineering
Languages : en
Pages : 201

Get Book Here

Book Description
In studying an algebraic surface E, which we assume is non-singular and projective over the field of complex numbers t, it is natural to study the curves on this surface. In order to do this one introduces various equivalence relations on the group of divisors (cycles of codimension one). One such relation is algebraic equivalence and we denote by NS(E) the group of divisors modulo algebraic equivalence which is called the N~ron-Severi group of the surface E. This is known to be a finitely generated abelian group which can be regarded naturally as a subgroup of 2 H (E,Z). The rank of NS(E) will be denoted p and is known as the Picard number of E. 2 Every divisor determines a cohomology class in H(E,E) which is of I type (1,1), that is to say a class in H(E,9!) which can be viewed as a 2 subspace of H(E,E) via the Hodge decomposition. The Hodge Conjecture asserts in general that every rational cohomology class of type (p,p) is algebraic. In our case this is the Lefschetz Theorem on (I,l)-classes: Every cohomology class 2 2 is the class associated to some divisor. Here we are writing H (E,Z) for 2 its image under the natural mapping into H (E,t). Thus NS(E) modulo 2 torsion is Hl(E,n!) n H(E,Z) and th 1 b i f h -~ p measures e a ge ra c part 0 t e cohomology.

Automorphic Forms and the Picard Number of an Elliptic Surface

Automorphic Forms and the Picard Number of an Elliptic Surface PDF Author: Peter F. Stiller
Publisher: Springer Science & Business Media
ISBN: 3322907082
Category : Technology & Engineering
Languages : en
Pages : 201

Get Book Here

Book Description
In studying an algebraic surface E, which we assume is non-singular and projective over the field of complex numbers t, it is natural to study the curves on this surface. In order to do this one introduces various equivalence relations on the group of divisors (cycles of codimension one). One such relation is algebraic equivalence and we denote by NS(E) the group of divisors modulo algebraic equivalence which is called the N~ron-Severi group of the surface E. This is known to be a finitely generated abelian group which can be regarded naturally as a subgroup of 2 H (E,Z). The rank of NS(E) will be denoted p and is known as the Picard number of E. 2 Every divisor determines a cohomology class in H(E,E) which is of I type (1,1), that is to say a class in H(E,9!) which can be viewed as a 2 subspace of H(E,E) via the Hodge decomposition. The Hodge Conjecture asserts in general that every rational cohomology class of type (p,p) is algebraic. In our case this is the Lefschetz Theorem on (I,l)-classes: Every cohomology class 2 2 is the class associated to some divisor. Here we are writing H (E,Z) for 2 its image under the natural mapping into H (E,t). Thus NS(E) modulo 2 torsion is Hl(E,n!) n H(E,Z) and th 1 b i f h -~ p measures e a ge ra c part 0 t e cohomology.

Automorphic Forms and the Picard Number of an Elliptic Surface

Automorphic Forms and the Picard Number of an Elliptic Surface PDF Author: Peter Stiller
Publisher: Springer Science & Business Media
ISBN:
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
In studying an algebraic surface E, which we assume is non-singular and projective over the field of complex numbers t, it is natural to study the curves on this surface. In order to do this one introduces various equivalence relations on the group of divisors (cycles of codimension one). One such relation is algebraic equivalence and we denote by NS(E) the group of divisors modulo algebraic equivalence which is called the N~ron-Severi group of the surface E. This is known to be a finitely generated abelian group which can be regarded naturally as a subgroup of 2 H (E,Z). The rank of NS(E) will be denoted p and is known as the Picard number of E. 2 Every divisor determines a cohomology class in H(E,E) which is of I type (1,1), that is to say a class in H(E,9!) which can be viewed as a 2 subspace of H(E,E) via the Hodge decomposition. The Hodge Conjecture asserts in general that every rational cohomology class of type (p,p) is algebraic. In our case this is the Lefschetz Theorem on (I,l)-classes: Every cohomology class 2 2 is the class associated to some divisor. Here we are writing H (E,Z) for 2 its image under the natural mapping into H (E,t). Thus NS(E) modulo 2 torsion is Hl(E,n!) n H(E,Z) and th 1 b i f h -~ p measures e a ge ra c part 0 t e cohomology.

Automorphic Forms Attached to Differential Equations and Relationships with the Picard Number of an Elliptic Surface

Automorphic Forms Attached to Differential Equations and Relationships with the Picard Number of an Elliptic Surface PDF Author: Peter Stiller
Publisher:
ISBN:
Category : Algebraic functions
Languages : en
Pages : 0

Get Book Here

Book Description


Special Values of Dirichlet Series, Monodromy, and the Periods of Automorphic Forms

Special Values of Dirichlet Series, Monodromy, and the Periods of Automorphic Forms PDF Author: Peter Stiller
Publisher: American Mathematical Soc.
ISBN: 0821823000
Category : Mathematics
Languages : en
Pages : 123

Get Book Here

Book Description
In this paper we explore a relationship that exists between the classical cusp form for subgroups of finite index in [italic]SL2([double-struck capital]Z) and certain differential equations, and we develop a connection between the equation's monodromy representation and the special values in the critical strip of the Dirichlet series associated to the cusp form.

Manifolds and Modular Forms

Manifolds and Modular Forms PDF Author: Friedrich Hirzebruch
Publisher: Springer Science & Business Media
ISBN: 3663107264
Category : Technology & Engineering
Languages : en
Pages : 216

Get Book Here

Book Description
This book provides a comprehensive introduction to the theory of elliptic genera due to Ochanine, Landweber, Stong, and others. The theory describes a new cobordism invariant for manifolds in terms of modular forms. The book evolved from notes of a course given at the University of Bonn. After providing some background material elliptic genera are constructed, including the classical genera signature and the index of the Dirac operator as special cases. Various properties of elliptic genera are discussed, especially their behaviour in fibre bundles and rigidity for group actions. For stably almost complex manifolds the theory is extended to elliptic genera of higher level. The text is in most parts self-contained. The results are illustrated by explicit examples and by comparison with well-known theorems. The relevant aspects of the theory of modular forms are derived in a seperate appendix, providing also a useful reference for mathematicians working in this field.

Calabi-Yau Varieties and Mirror Symmetry

Calabi-Yau Varieties and Mirror Symmetry PDF Author: Noriko Yui
Publisher: American Mathematical Soc.
ISBN: 0821833553
Category : Mathematics
Languages : en
Pages : 385

Get Book Here

Book Description
The idea of mirror symmetry originated in physics, but in recent years, the field of mirror symmetry has exploded onto the mathematical scene. It has inspired many new developments in algebraic and arithmetic geometry, toric geometry, the theory of Riemann surfaces, and infinite-dimensional Lie algebras among others. The developments in physics stimulated the interest of mathematicians in Calabi-Yau varieties. This led to the realization that the time is ripe for mathematicians, armed with many concrete examples and alerted by the mirror symmetry phenomenon, to focus on Calabi-Yau varieties and to test for these special varieties some of the great outstanding conjectures, e.g., the modularity conjecture for Calabi-Yau threefolds defined over the rationals, the Bloch-Beilinson conjectures, regulator maps of higher algebraic cycles, Picard-Fuchs differential equations, GKZ hypergeometric systems, and others. The articles in this volume report on current developments. The papers are divided roughly into two categories: geometric methods and arithmetic methods. One of the significant outcomes of the workshop is that we are finally beginning to understand the mirror symmetry phenomenon from the arithmetic point of view, namely, in terms of zeta-functions and L-series of mirror pairs of Calabi-Yau threefolds. The book is suitable for researchers interested in mirror symmetry and string theory.

Modular Forms and String Duality

Modular Forms and String Duality PDF Author: Noriko Yui, Helena Verrill, and Charles F. Doran
Publisher: American Mathematical Soc.
ISBN: 9780821871577
Category : Duality (Mathematics)
Languages : en
Pages : 324

Get Book Here

Book Description
"This book is a testimony to the BIRS Workshop, and it covers a wide range of topics at the interface of number theory and string theory, with special emphasis on modular forms and string duality. They include the recent advances as well as introductory expositions on various aspects of modular forms, motives, differential equations, conformal field theory, topological strings and Gromov-Witten invariants, mirror symmetry, and homological mirror symmetry. The contributions are roughly divided into three categories: arithmetic and modular forms, geometric and differential equations, and physics and string theory. The book is suitable for researchers working at the interface of number theory and string theory."--BOOK JACKET.

$p$-Adic Methods in Number Theory and Algebraic Geometry

$p$-Adic Methods in Number Theory and Algebraic Geometry PDF Author: Alan Adolphson
Publisher: American Mathematical Soc.
ISBN: 0821851454
Category : Mathematics
Languages : en
Pages : 254

Get Book Here

Book Description
Two meetings of the AMS in the autumn of 1989 - one at the Stevens Institute of Technology and the other at Ball State University - included Special Sessions on the role of p-adic methods in number theory and algebraic geometry. This volume grew out of these Special Sessions. Drawn from a wide area of mathematics, the articles presented here provide an excellent sampling of the broad range of trends and applications in p-adic methods.

Value Distribution Theory of the Gauss Map of Minimal Surfaces in Rm

Value Distribution Theory of the Gauss Map of Minimal Surfaces in Rm PDF Author: Hirotaka Fujimoto
Publisher: Springer Science & Business Media
ISBN: 332280271X
Category : Mathematics
Languages : en
Pages : 222

Get Book Here

Book Description
This book presents in a systematic and almost self-contained way the striking analogy between classical function theory, in particular the value distribution theory of holomorphic curves in projective space, on the one hand, and important and beautiful properties of the Gauss map of minimal surfaces on the other hand. Both theories are developed in the text, including many results of recent research. The relations and analogies between them become completely clear. The book is written for interested graduate students and mathematicians, who want to become more familiar with this modern development in the two classical areas of mathematics, but also for those, who intend to do further research on minimal surfaces.

Locally Mixed Symmetric Spaces

Locally Mixed Symmetric Spaces PDF Author: Bruce Hunt
Publisher: Springer Nature
ISBN: 3030698041
Category : Mathematics
Languages : en
Pages : 622

Get Book Here

Book Description
What do the classification of algebraic surfaces, Weyl's dimension formula and maximal orders in central simple algebras have in common? All are related to a type of manifold called locally mixed symmetric spaces in this book. The presentation emphasizes geometric concepts and relations and gives each reader the "roter Faden", starting from the basics and proceeding towards quite advanced topics which lie at the intersection of differential and algebraic geometry, algebra and topology. Avoiding technicalities and assuming only a working knowledge of real Lie groups, the text provides a wealth of examples of symmetric spaces. The last two chapters deal with one particular case (Kuga fiber spaces) and a generalization (elliptic surfaces), both of which require some knowledge of algebraic geometry. Of interest to topologists, differential or algebraic geometers working in areas related to arithmetic groups, the book also offers an introduction to the ideas for non-experts.