Author: Dong Yu
Publisher: Springer
ISBN: 1447157796
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.
Automatic Speech Recognition
Author: Dong Yu
Publisher: Springer
ISBN: 1447157796
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.
Publisher: Springer
ISBN: 1447157796
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.
Robust Speech
Author: Michael Grimm
Publisher: BoD – Books on Demand
ISBN: 3902613084
Category : Computers
Languages : en
Pages : 471
Book Description
This book on Robust Speech Recognition and Understanding brings together many different aspects of the current research on automatic speech recognition and language understanding. The first four chapters address the task of voice activity detection which is considered an important issue for all speech recognition systems. The next chapters give several extensions to state-of-the-art HMM methods. Furthermore, a number of chapters particularly address the task of robust ASR under noisy conditions. Two chapters on the automatic recognition of a speaker's emotional state highlight the importance of natural speech understanding and interpretation in voice-driven systems. The last chapters of the book address the application of conversational systems on robots, as well as the autonomous acquisition of vocalization skills.
Publisher: BoD – Books on Demand
ISBN: 3902613084
Category : Computers
Languages : en
Pages : 471
Book Description
This book on Robust Speech Recognition and Understanding brings together many different aspects of the current research on automatic speech recognition and language understanding. The first four chapters address the task of voice activity detection which is considered an important issue for all speech recognition systems. The next chapters give several extensions to state-of-the-art HMM methods. Furthermore, a number of chapters particularly address the task of robust ASR under noisy conditions. Two chapters on the automatic recognition of a speaker's emotional state highlight the importance of natural speech understanding and interpretation in voice-driven systems. The last chapters of the book address the application of conversational systems on robots, as well as the autonomous acquisition of vocalization skills.
Robustness in Automatic Speech Recognition
Author: Jean-Claude Junqua
Publisher: Springer Science & Business Media
ISBN: 1461312973
Category : Technology & Engineering
Languages : en
Pages : 457
Book Description
Foreword Looking back the past 30 years. we have seen steady progress made in the area of speech science and technology. I still remember the excitement in the late seventies when Texas Instruments came up with a toy named "Speak-and-Spell" which was based on a VLSI chip containing the state-of-the-art linear prediction synthesizer. This caused a speech technology fever among the electronics industry. Particularly. applications of automatic speech recognition were rigorously attempt ed by many companies. some of which were start-ups founded just for this purpose. Unfortunately. it did not take long before they realized that automatic speech rec ognition technology was not mature enough to satisfy the need of customers. The fever gradually faded away. In the meantime. constant efforts have been made by many researchers and engi neers to improve the automatic speech recognition technology. Hardware capabilities have advanced impressively since that time. In the past few years. we have been witnessing and experiencing the advent of the "Information Revolution." What might be called the second surge of interest to com mercialize speech technology as a natural interface for man-machine communication began in much better shape than the first one. With computers much more powerful and faster. many applications look realistic this time. However. there are still tremendous practical issues to be overcome in order for speech to be truly the most natural interface between humans and machines.
Publisher: Springer Science & Business Media
ISBN: 1461312973
Category : Technology & Engineering
Languages : en
Pages : 457
Book Description
Foreword Looking back the past 30 years. we have seen steady progress made in the area of speech science and technology. I still remember the excitement in the late seventies when Texas Instruments came up with a toy named "Speak-and-Spell" which was based on a VLSI chip containing the state-of-the-art linear prediction synthesizer. This caused a speech technology fever among the electronics industry. Particularly. applications of automatic speech recognition were rigorously attempt ed by many companies. some of which were start-ups founded just for this purpose. Unfortunately. it did not take long before they realized that automatic speech rec ognition technology was not mature enough to satisfy the need of customers. The fever gradually faded away. In the meantime. constant efforts have been made by many researchers and engi neers to improve the automatic speech recognition technology. Hardware capabilities have advanced impressively since that time. In the past few years. we have been witnessing and experiencing the advent of the "Information Revolution." What might be called the second surge of interest to com mercialize speech technology as a natural interface for man-machine communication began in much better shape than the first one. With computers much more powerful and faster. many applications look realistic this time. However. there are still tremendous practical issues to be overcome in order for speech to be truly the most natural interface between humans and machines.
Techniques for Noise Robustness in Automatic Speech Recognition
Author: Tuomas Virtanen
Publisher: John Wiley & Sons
ISBN: 1119970881
Category : Technology & Engineering
Languages : en
Pages : 514
Book Description
Automatic speech recognition (ASR) systems are finding increasing use in everyday life. Many of the commonplace environments where the systems are used are noisy, for example users calling up a voice search system from a busy cafeteria or a street. This can result in degraded speech recordings and adversely affect the performance of speech recognition systems. As the use of ASR systems increases, knowledge of the state-of-the-art in techniques to deal with such problems becomes critical to system and application engineers and researchers who work with or on ASR technologies. This book presents a comprehensive survey of the state-of-the-art in techniques used to improve the robustness of speech recognition systems to these degrading external influences. Key features: Reviews all the main noise robust ASR approaches, including signal separation, voice activity detection, robust feature extraction, model compensation and adaptation, missing data techniques and recognition of reverberant speech. Acts as a timely exposition of the topic in light of more widespread use in the future of ASR technology in challenging environments. Addresses robustness issues and signal degradation which are both key requirements for practitioners of ASR. Includes contributions from top ASR researchers from leading research units in the field
Publisher: John Wiley & Sons
ISBN: 1119970881
Category : Technology & Engineering
Languages : en
Pages : 514
Book Description
Automatic speech recognition (ASR) systems are finding increasing use in everyday life. Many of the commonplace environments where the systems are used are noisy, for example users calling up a voice search system from a busy cafeteria or a street. This can result in degraded speech recordings and adversely affect the performance of speech recognition systems. As the use of ASR systems increases, knowledge of the state-of-the-art in techniques to deal with such problems becomes critical to system and application engineers and researchers who work with or on ASR technologies. This book presents a comprehensive survey of the state-of-the-art in techniques used to improve the robustness of speech recognition systems to these degrading external influences. Key features: Reviews all the main noise robust ASR approaches, including signal separation, voice activity detection, robust feature extraction, model compensation and adaptation, missing data techniques and recognition of reverberant speech. Acts as a timely exposition of the topic in light of more widespread use in the future of ASR technology in challenging environments. Addresses robustness issues and signal degradation which are both key requirements for practitioners of ASR. Includes contributions from top ASR researchers from leading research units in the field
Robust Automatic Speech Recognition
Author: Jinyu Li
Publisher: Academic Press
ISBN: 0128026162
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
Robust Automatic Speech Recognition: A Bridge to Practical Applications establishes a solid foundation for automatic speech recognition that is robust against acoustic environmental distortion. It provides a thorough overview of classical and modern noise-and reverberation robust techniques that have been developed over the past thirty years, with an emphasis on practical methods that have been proven to be successful and which are likely to be further developed for future applications.The strengths and weaknesses of robustness-enhancing speech recognition techniques are carefully analyzed. The book covers noise-robust techniques designed for acoustic models which are based on both Gaussian mixture models and deep neural networks. In addition, a guide to selecting the best methods for practical applications is provided.The reader will: - Gain a unified, deep and systematic understanding of the state-of-the-art technologies for robust speech recognition - Learn the links and relationship between alternative technologies for robust speech recognition - Be able to use the technology analysis and categorization detailed in the book to guide future technology development - Be able to develop new noise-robust methods in the current era of deep learning for acoustic modeling in speech recognition - The first book that provides a comprehensive review on noise and reverberation robust speech recognition methods in the era of deep neural networks - Connects robust speech recognition techniques to machine learning paradigms with rigorous mathematical treatment - Provides elegant and structural ways to categorize and analyze noise-robust speech recognition techniques - Written by leading researchers who have been actively working on the subject matter in both industrial and academic organizations for many years
Publisher: Academic Press
ISBN: 0128026162
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
Robust Automatic Speech Recognition: A Bridge to Practical Applications establishes a solid foundation for automatic speech recognition that is robust against acoustic environmental distortion. It provides a thorough overview of classical and modern noise-and reverberation robust techniques that have been developed over the past thirty years, with an emphasis on practical methods that have been proven to be successful and which are likely to be further developed for future applications.The strengths and weaknesses of robustness-enhancing speech recognition techniques are carefully analyzed. The book covers noise-robust techniques designed for acoustic models which are based on both Gaussian mixture models and deep neural networks. In addition, a guide to selecting the best methods for practical applications is provided.The reader will: - Gain a unified, deep and systematic understanding of the state-of-the-art technologies for robust speech recognition - Learn the links and relationship between alternative technologies for robust speech recognition - Be able to use the technology analysis and categorization detailed in the book to guide future technology development - Be able to develop new noise-robust methods in the current era of deep learning for acoustic modeling in speech recognition - The first book that provides a comprehensive review on noise and reverberation robust speech recognition methods in the era of deep neural networks - Connects robust speech recognition techniques to machine learning paradigms with rigorous mathematical treatment - Provides elegant and structural ways to categorize and analyze noise-robust speech recognition techniques - Written by leading researchers who have been actively working on the subject matter in both industrial and academic organizations for many years
Mathematical Foundations of Speech and Language Processing
Author: Mark Johnson
Publisher: Springer Science & Business Media
ISBN: 1441990178
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Speech and language technologies continue to grow in importance as they are used to create natural and efficient interfaces between people and machines, and to automatically transcribe, extract, analyze, and route information from high-volume streams of spoken and written information. The workshops on Mathematical Foundations of Speech Processing and Natural Language Modeling were held in the Fall of 2000 at the University of Minnesota's NSF-sponsored Institute for Mathematics and Its Applications, as part of a "Mathematics in Multimedia" year-long program. Each workshop brought together researchers in the respective technologies on the one hand, and mathematicians and statisticians on the other hand, for an intensive week of cross-fertilization. There is a long history of benefit from introducing mathematical techniques and ideas to speech and language technologies. Examples include the source-channel paradigm, hidden Markov models, decision trees, exponential models and formal languages theory. It is likely that new mathematical techniques, or novel applications of existing techniques, will once again prove pivotal for moving the field forward. This volume consists of original contributions presented by participants during the two workshops. Topics include language modeling, prosody, acoustic-phonetic modeling, and statistical methodology.
Publisher: Springer Science & Business Media
ISBN: 1441990178
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Speech and language technologies continue to grow in importance as they are used to create natural and efficient interfaces between people and machines, and to automatically transcribe, extract, analyze, and route information from high-volume streams of spoken and written information. The workshops on Mathematical Foundations of Speech Processing and Natural Language Modeling were held in the Fall of 2000 at the University of Minnesota's NSF-sponsored Institute for Mathematics and Its Applications, as part of a "Mathematics in Multimedia" year-long program. Each workshop brought together researchers in the respective technologies on the one hand, and mathematicians and statisticians on the other hand, for an intensive week of cross-fertilization. There is a long history of benefit from introducing mathematical techniques and ideas to speech and language technologies. Examples include the source-channel paradigm, hidden Markov models, decision trees, exponential models and formal languages theory. It is likely that new mathematical techniques, or novel applications of existing techniques, will once again prove pivotal for moving the field forward. This volume consists of original contributions presented by participants during the two workshops. Topics include language modeling, prosody, acoustic-phonetic modeling, and statistical methodology.
Automatic Speech Recognition
Author: Kai-Fu Lee
Publisher: Springer Science & Business Media
ISBN: 9780898382969
Category : Technology & Engineering
Languages : en
Pages : 232
Book Description
Speech Recognition has a long history of being one of the difficult problems in Artificial Intelligence and Computer Science. As one goes from problem solving tasks such as puzzles and chess to perceptual tasks such as speech and vision, the problem characteristics change dramatically: knowledge poor to knowledge rich; low data rates to high data rates; slow response time (minutes to hours) to instantaneous response time. These characteristics taken together increase the computational complexity of the problem by several orders of magnitude. Further, speech provides a challenging task domain which embodies many of the requirements of intelligent behavior: operate in real time; exploit vast amounts of knowledge, tolerate errorful, unexpected unknown input; use symbols and abstractions; communicate in natural language and learn from the environment. Voice input to computers offers a number of advantages. It provides a natural, fast, hands free, eyes free, location free input medium. However, there are many as yet unsolved problems that prevent routine use of speech as an input device by non-experts. These include cost, real time response, speaker independence, robustness to variations such as noise, microphone, speech rate and loudness, and the ability to handle non-grammatical speech. Satisfactory solutions to each of these problems can be expected within the next decade. Recognition of unrestricted spontaneous continuous speech appears unsolvable at present. However, by the addition of simple constraints, such as clarification dialog to resolve ambiguity, we believe it will be possible to develop systems capable of accepting very large vocabulary continuous speechdictation.
Publisher: Springer Science & Business Media
ISBN: 9780898382969
Category : Technology & Engineering
Languages : en
Pages : 232
Book Description
Speech Recognition has a long history of being one of the difficult problems in Artificial Intelligence and Computer Science. As one goes from problem solving tasks such as puzzles and chess to perceptual tasks such as speech and vision, the problem characteristics change dramatically: knowledge poor to knowledge rich; low data rates to high data rates; slow response time (minutes to hours) to instantaneous response time. These characteristics taken together increase the computational complexity of the problem by several orders of magnitude. Further, speech provides a challenging task domain which embodies many of the requirements of intelligent behavior: operate in real time; exploit vast amounts of knowledge, tolerate errorful, unexpected unknown input; use symbols and abstractions; communicate in natural language and learn from the environment. Voice input to computers offers a number of advantages. It provides a natural, fast, hands free, eyes free, location free input medium. However, there are many as yet unsolved problems that prevent routine use of speech as an input device by non-experts. These include cost, real time response, speaker independence, robustness to variations such as noise, microphone, speech rate and loudness, and the ability to handle non-grammatical speech. Satisfactory solutions to each of these problems can be expected within the next decade. Recognition of unrestricted spontaneous continuous speech appears unsolvable at present. However, by the addition of simple constraints, such as clarification dialog to resolve ambiguity, we believe it will be possible to develop systems capable of accepting very large vocabulary continuous speechdictation.
Automatic Speech Recognition on Mobile Devices and over Communication Networks
Author: Zheng-Hua Tan
Publisher: Springer Science & Business Media
ISBN: 1848001436
Category : Technology & Engineering
Languages : en
Pages : 408
Book Description
The advances in computing and networking have sparked an enormous interest in deploying automatic speech recognition on mobile devices and over communication networks. This book brings together academic researchers and industrial practitioners to address the issues in this emerging realm and presents the reader with a comprehensive introduction to the subject of speech recognition in devices and networks. It covers network, distributed and embedded speech recognition systems.
Publisher: Springer Science & Business Media
ISBN: 1848001436
Category : Technology & Engineering
Languages : en
Pages : 408
Book Description
The advances in computing and networking have sparked an enormous interest in deploying automatic speech recognition on mobile devices and over communication networks. This book brings together academic researchers and industrial practitioners to address the issues in this emerging realm and presents the reader with a comprehensive introduction to the subject of speech recognition in devices and networks. It covers network, distributed and embedded speech recognition systems.
Automatic Speech and Speaker Recognition
Author: Chin-Hui Lee
Publisher: Springer Science & Business Media
ISBN: 1461313678
Category : Technology & Engineering
Languages : en
Pages : 524
Book Description
Research in the field of automatic speech and speaker recognition has made a number of significant advances in the last two decades, influenced by advances in signal processing, algorithms, architectures, and hardware. These advances include: the adoption of a statistical pattern recognition paradigm; the use of the hidden Markov modeling framework to characterize both the spectral and the temporal variations in the speech signal; the use of a large set of speech utterance examples from a large population of speakers to train the hidden Markov models of some fundamental speech units; the organization of speech and language knowledge sources into a structural finite state network; and the use of dynamic, programming based heuristic search methods to find the best word sequence in the lexical network corresponding to the spoken utterance. Automatic Speech and Speaker Recognition: Advanced Topics groups together in a single volume a number of important topics on speech and speaker recognition, topics which are of fundamental importance, but not yet covered in detail in existing textbooks. Although no explicit partition is given, the book is divided into five parts: Chapters 1-2 are devoted to technology overviews; Chapters 3-12 discuss acoustic modeling of fundamental speech units and lexical modeling of words and pronunciations; Chapters 13-15 address the issues related to flexibility and robustness; Chapter 16-18 concern the theoretical and practical issues of search; Chapters 19-20 give two examples of algorithm and implementational aspects for recognition system realization. Audience: A reference book for speech researchers and graduate students interested in pursuing potential research on the topic. May also be used as a text for advanced courses on the subject.
Publisher: Springer Science & Business Media
ISBN: 1461313678
Category : Technology & Engineering
Languages : en
Pages : 524
Book Description
Research in the field of automatic speech and speaker recognition has made a number of significant advances in the last two decades, influenced by advances in signal processing, algorithms, architectures, and hardware. These advances include: the adoption of a statistical pattern recognition paradigm; the use of the hidden Markov modeling framework to characterize both the spectral and the temporal variations in the speech signal; the use of a large set of speech utterance examples from a large population of speakers to train the hidden Markov models of some fundamental speech units; the organization of speech and language knowledge sources into a structural finite state network; and the use of dynamic, programming based heuristic search methods to find the best word sequence in the lexical network corresponding to the spoken utterance. Automatic Speech and Speaker Recognition: Advanced Topics groups together in a single volume a number of important topics on speech and speaker recognition, topics which are of fundamental importance, but not yet covered in detail in existing textbooks. Although no explicit partition is given, the book is divided into five parts: Chapters 1-2 are devoted to technology overviews; Chapters 3-12 discuss acoustic modeling of fundamental speech units and lexical modeling of words and pronunciations; Chapters 13-15 address the issues related to flexibility and robustness; Chapter 16-18 concern the theoretical and practical issues of search; Chapters 19-20 give two examples of algorithm and implementational aspects for recognition system realization. Audience: A reference book for speech researchers and graduate students interested in pursuing potential research on the topic. May also be used as a text for advanced courses on the subject.
Automatic Speech Recognition and Understanding
Author:
Publisher:
ISBN:
Category : Automatic speech recognition
Languages : en
Pages : 736
Book Description
Publisher:
ISBN:
Category : Automatic speech recognition
Languages : en
Pages : 736
Book Description