Automatic Speech Recognition

Automatic Speech Recognition PDF Author: Dong Yu
Publisher: Springer
ISBN: 1447157796
Category : Technology & Engineering
Languages : en
Pages : 329

Get Book Here

Book Description
This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.

Automatic Speech Recognition

Automatic Speech Recognition PDF Author: Dong Yu
Publisher: Springer
ISBN: 1447157796
Category : Technology & Engineering
Languages : en
Pages : 329

Get Book Here

Book Description
This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.

Robust Automatic Speech Recognition

Robust Automatic Speech Recognition PDF Author: Jinyu Li
Publisher: Academic Press
ISBN: 0128026162
Category : Technology & Engineering
Languages : en
Pages : 308

Get Book Here

Book Description
Robust Automatic Speech Recognition: A Bridge to Practical Applications establishes a solid foundation for automatic speech recognition that is robust against acoustic environmental distortion. It provides a thorough overview of classical and modern noise-and reverberation robust techniques that have been developed over the past thirty years, with an emphasis on practical methods that have been proven to be successful and which are likely to be further developed for future applications.The strengths and weaknesses of robustness-enhancing speech recognition techniques are carefully analyzed. The book covers noise-robust techniques designed for acoustic models which are based on both Gaussian mixture models and deep neural networks. In addition, a guide to selecting the best methods for practical applications is provided.The reader will: - Gain a unified, deep and systematic understanding of the state-of-the-art technologies for robust speech recognition - Learn the links and relationship between alternative technologies for robust speech recognition - Be able to use the technology analysis and categorization detailed in the book to guide future technology development - Be able to develop new noise-robust methods in the current era of deep learning for acoustic modeling in speech recognition - The first book that provides a comprehensive review on noise and reverberation robust speech recognition methods in the era of deep neural networks - Connects robust speech recognition techniques to machine learning paradigms with rigorous mathematical treatment - Provides elegant and structural ways to categorize and analyze noise-robust speech recognition techniques - Written by leading researchers who have been actively working on the subject matter in both industrial and academic organizations for many years

Automatic Speech Recognition

Automatic Speech Recognition PDF Author: Kai-Fu Lee
Publisher: Springer Science & Business Media
ISBN: 1461536502
Category : Technology & Engineering
Languages : en
Pages : 216

Get Book Here

Book Description
Speech Recognition has a long history of being one of the difficult problems in Artificial Intelligence and Computer Science. As one goes from problem solving tasks such as puzzles and chess to perceptual tasks such as speech and vision, the problem characteristics change dramatically: knowledge poor to knowledge rich; low data rates to high data rates; slow response time (minutes to hours) to instantaneous response time. These characteristics taken together increase the computational complexity of the problem by several orders of magnitude. Further, speech provides a challenging task domain which embodies many of the requirements of intelligent behavior: operate in real time; exploit vast amounts of knowledge, tolerate errorful, unexpected unknown input; use symbols and abstractions; communicate in natural language and learn from the environment. Voice input to computers offers a number of advantages. It provides a natural, fast, hands free, eyes free, location free input medium. However, there are many as yet unsolved problems that prevent routine use of speech as an input device by non-experts. These include cost, real time response, speaker independence, robustness to variations such as noise, microphone, speech rate and loudness, and the ability to handle non-grammatical speech. Satisfactory solutions to each of these problems can be expected within the next decade. Recognition of unrestricted spontaneous continuous speech appears unsolvable at present. However, by the addition of simple constraints, such as clarification dialog to resolve ambiguity, we believe it will be possible to develop systems capable of accepting very large vocabulary continuous speechdictation.

Robustness in Automatic Speech Recognition

Robustness in Automatic Speech Recognition PDF Author: Jean-Claude Junqua
Publisher: Springer Science & Business Media
ISBN: 1461312973
Category : Technology & Engineering
Languages : en
Pages : 457

Get Book Here

Book Description
Foreword Looking back the past 30 years. we have seen steady progress made in the area of speech science and technology. I still remember the excitement in the late seventies when Texas Instruments came up with a toy named "Speak-and-Spell" which was based on a VLSI chip containing the state-of-the-art linear prediction synthesizer. This caused a speech technology fever among the electronics industry. Particularly. applications of automatic speech recognition were rigorously attempt ed by many companies. some of which were start-ups founded just for this purpose. Unfortunately. it did not take long before they realized that automatic speech rec ognition technology was not mature enough to satisfy the need of customers. The fever gradually faded away. In the meantime. constant efforts have been made by many researchers and engi neers to improve the automatic speech recognition technology. Hardware capabilities have advanced impressively since that time. In the past few years. we have been witnessing and experiencing the advent of the "Information Revolution." What might be called the second surge of interest to com mercialize speech technology as a natural interface for man-machine communication began in much better shape than the first one. With computers much more powerful and faster. many applications look realistic this time. However. there are still tremendous practical issues to be overcome in order for speech to be truly the most natural interface between humans and machines.

Techniques for Noise Robustness in Automatic Speech Recognition

Techniques for Noise Robustness in Automatic Speech Recognition PDF Author: Tuomas Virtanen
Publisher: John Wiley & Sons
ISBN: 1119970881
Category : Technology & Engineering
Languages : en
Pages : 514

Get Book Here

Book Description
Automatic speech recognition (ASR) systems are finding increasing use in everyday life. Many of the commonplace environments where the systems are used are noisy, for example users calling up a voice search system from a busy cafeteria or a street. This can result in degraded speech recordings and adversely affect the performance of speech recognition systems. As the use of ASR systems increases, knowledge of the state-of-the-art in techniques to deal with such problems becomes critical to system and application engineers and researchers who work with or on ASR technologies. This book presents a comprehensive survey of the state-of-the-art in techniques used to improve the robustness of speech recognition systems to these degrading external influences. Key features: Reviews all the main noise robust ASR approaches, including signal separation, voice activity detection, robust feature extraction, model compensation and adaptation, missing data techniques and recognition of reverberant speech. Acts as a timely exposition of the topic in light of more widespread use in the future of ASR technology in challenging environments. Addresses robustness issues and signal degradation which are both key requirements for practitioners of ASR. Includes contributions from top ASR researchers from leading research units in the field

Automatic Speech and Speaker Recognition

Automatic Speech and Speaker Recognition PDF Author: Chin-Hui Lee
Publisher: Springer Science & Business Media
ISBN: 1461313678
Category : Technology & Engineering
Languages : en
Pages : 524

Get Book Here

Book Description
Research in the field of automatic speech and speaker recognition has made a number of significant advances in the last two decades, influenced by advances in signal processing, algorithms, architectures, and hardware. These advances include: the adoption of a statistical pattern recognition paradigm; the use of the hidden Markov modeling framework to characterize both the spectral and the temporal variations in the speech signal; the use of a large set of speech utterance examples from a large population of speakers to train the hidden Markov models of some fundamental speech units; the organization of speech and language knowledge sources into a structural finite state network; and the use of dynamic, programming based heuristic search methods to find the best word sequence in the lexical network corresponding to the spoken utterance. Automatic Speech and Speaker Recognition: Advanced Topics groups together in a single volume a number of important topics on speech and speaker recognition, topics which are of fundamental importance, but not yet covered in detail in existing textbooks. Although no explicit partition is given, the book is divided into five parts: Chapters 1-2 are devoted to technology overviews; Chapters 3-12 discuss acoustic modeling of fundamental speech units and lexical modeling of words and pronunciations; Chapters 13-15 address the issues related to flexibility and robustness; Chapter 16-18 concern the theoretical and practical issues of search; Chapters 19-20 give two examples of algorithm and implementational aspects for recognition system realization. Audience: A reference book for speech researchers and graduate students interested in pursuing potential research on the topic. May also be used as a text for advanced courses on the subject.

Automatic Speech Recognition on Mobile Devices and over Communication Networks

Automatic Speech Recognition on Mobile Devices and over Communication Networks PDF Author: Zheng-Hua Tan
Publisher: Springer Science & Business Media
ISBN: 1848001436
Category : Technology & Engineering
Languages : en
Pages : 408

Get Book Here

Book Description
The advances in computing and networking have sparked an enormous interest in deploying automatic speech recognition on mobile devices and over communication networks. This book brings together academic researchers and industrial practitioners to address the issues in this emerging realm and presents the reader with a comprehensive introduction to the subject of speech recognition in devices and networks. It covers network, distributed and embedded speech recognition systems.

Acoustical and Environmental Robustness in Automatic Speech Recognition

Acoustical and Environmental Robustness in Automatic Speech Recognition PDF Author: A. Acero
Publisher: Springer Science & Business Media
ISBN: 1461531225
Category : Technology & Engineering
Languages : en
Pages : 197

Get Book Here

Book Description
The need for automatic speech recognition systems to be robust with respect to changes in their acoustical environment has become more widely appreciated in recent years, as more systems are finding their way into practical applications. Although the issue of environmental robustness has received only a small fraction of the attention devoted to speaker independence, even speech recognition systems that are designed to be speaker independent frequently perform very poorly when they are tested using a different type of microphone or acoustical environment from the one with which they were trained. The use of microphones other than a "close talking" headset also tends to severely degrade speech recognition -performance. Even in relatively quiet office environments, speech is degraded by additive noise from fans, slamming doors, and other conversations, as well as by the effects of unknown linear filtering arising reverberation from surface reflections in a room, or spectral shaping by microphones or the vocal tracts of individual speakers. Speech-recognition systems designed for long-distance telephone lines, or applications deployed in more adverse acoustical environments such as motor vehicles, factory floors, oroutdoors demand far greaterdegrees ofenvironmental robustness. There are several different ways of building acoustical robustness into speech recognition systems. Arrays of microphones can be used to develop a directionally-sensitive system that resists intelference from competing talkers and other noise sources that are spatially separated from the source of the desired speech signal.

Automatic Speech and Speaker Recognition

Automatic Speech and Speaker Recognition PDF Author: Joseph Keshet
Publisher: John Wiley & Sons
ISBN: 9780470742037
Category : Technology & Engineering
Languages : en
Pages : 268

Get Book Here

Book Description
This book discusses large margin and kernel methods for speech and speaker recognition Speech and Speaker Recognition: Large Margin and Kernel Methods is a collation of research in the recent advances in large margin and kernel methods, as applied to the field of speech and speaker recognition. It presents theoretical and practical foundations of these methods, from support vector machines to large margin methods for structured learning. It also provides examples of large margin based acoustic modelling for continuous speech recognizers, where the grounds for practical large margin sequence learning are set. Large margin methods for discriminative language modelling and text independent speaker verification are also addressed in this book. Key Features: Provides an up-to-date snapshot of the current state of research in this field Covers important aspects of extending the binary support vector machine to speech and speaker recognition applications Discusses large margin and kernel method algorithms for sequence prediction required for acoustic modeling Reviews past and present work on discriminative training of language models, and describes different large margin algorithms for the application of part-of-speech tagging Surveys recent work on the use of kernel approaches to text-independent speaker verification, and introduces the main concepts and algorithms Surveys recent work on kernel approaches to learning a similarity matrix from data This book will be of interest to researchers, practitioners, engineers, and scientists in speech processing and machine learning fields.

Distant Speech Recognition

Distant Speech Recognition PDF Author: Matthias Woelfel
Publisher: John Wiley & Sons
ISBN: 0470714077
Category : Technology & Engineering
Languages : en
Pages : 600

Get Book Here

Book Description
A complete overview of distant automatic speech recognition The performance of conventional Automatic Speech Recognition (ASR) systems degrades dramatically as soon as the microphone is moved away from the mouth of the speaker. This is due to a broad variety of effects such as background noise, overlapping speech from other speakers, and reverberation. While traditional ASR systems underperform for speech captured with far-field sensors, there are a number of novel techniques within the recognition system as well as techniques developed in other areas of signal processing that can mitigate the deleterious effects of noise and reverberation, as well as separating speech from overlapping speakers. Distant Speech Recognitionpresents a contemporary and comprehensive description of both theoretic abstraction and practical issues inherent in the distant ASR problem. Key Features: Covers the entire topic of distant ASR and offers practical solutions to overcome the problems related to it Provides documentation and sample scripts to enable readers to construct state-of-the-art distant speech recognition systems Gives relevant background information in acoustics and filter techniques, Explains the extraction and enhancement of classification relevant speech features Describes maximum likelihood as well as discriminative parameter estimation, and maximum likelihood normalization techniques Discusses the use of multi-microphone configurations for speaker tracking and channel combination Presents several applications of the methods and technologies described in this book Accompanying website with open source software and tools to construct state-of-the-art distant speech recognition systems This reference will be an invaluable resource for researchers, developers, engineers and other professionals, as well as advanced students in speech technology, signal processing, acoustics, statistics and artificial intelligence fields.