Author: T. Horiuchi
Publisher: Springer Science & Business Media
ISBN: 1461337305
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
The need for alternate energy sources has led to the develop ment of prototype fusion and MHD reactors. Both possible energy systems in current designs usually require the use of magnetic fields for plasma confinement and concentration. For the creation and maintenance of large 5 to 15 tesla magnetic fields, supercon ducting magnets appear more economical. But the high magnetic fields create large forces, and the complexities of the conceptual reactors create severe space restrictions. The combination of re quirements, plus the desire to keep construction costs at a mini mum, has created a need for stronger structural alloys for service at liquid helium temperature (4 K). The complexity of the required structures requires that these alloys be weldable. Furthermore, since the plasma is influenced by magnetic fields and since magnet ic forces from the use of ferromagnetic materials in many configur ations may be additive, the best structural alloy for most applica tions should be nonmagnetic. These requirements have led to consideration of higher strength austenitic steels. Strength increases at low temperatures are achieved by the addition of nitrogen. The stability of the austenitic structure is retained by adding manganese instead of nickel, which is more expensive. Research to develop these higher strength austenitic steels is in process, primarily in Japan and the United States.
Austenitic Steels at Low Temperatures
Author: T. Horiuchi
Publisher: Springer Science & Business Media
ISBN: 1461337305
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
The need for alternate energy sources has led to the develop ment of prototype fusion and MHD reactors. Both possible energy systems in current designs usually require the use of magnetic fields for plasma confinement and concentration. For the creation and maintenance of large 5 to 15 tesla magnetic fields, supercon ducting magnets appear more economical. But the high magnetic fields create large forces, and the complexities of the conceptual reactors create severe space restrictions. The combination of re quirements, plus the desire to keep construction costs at a mini mum, has created a need for stronger structural alloys for service at liquid helium temperature (4 K). The complexity of the required structures requires that these alloys be weldable. Furthermore, since the plasma is influenced by magnetic fields and since magnet ic forces from the use of ferromagnetic materials in many configur ations may be additive, the best structural alloy for most applica tions should be nonmagnetic. These requirements have led to consideration of higher strength austenitic steels. Strength increases at low temperatures are achieved by the addition of nitrogen. The stability of the austenitic structure is retained by adding manganese instead of nickel, which is more expensive. Research to develop these higher strength austenitic steels is in process, primarily in Japan and the United States.
Publisher: Springer Science & Business Media
ISBN: 1461337305
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
The need for alternate energy sources has led to the develop ment of prototype fusion and MHD reactors. Both possible energy systems in current designs usually require the use of magnetic fields for plasma confinement and concentration. For the creation and maintenance of large 5 to 15 tesla magnetic fields, supercon ducting magnets appear more economical. But the high magnetic fields create large forces, and the complexities of the conceptual reactors create severe space restrictions. The combination of re quirements, plus the desire to keep construction costs at a mini mum, has created a need for stronger structural alloys for service at liquid helium temperature (4 K). The complexity of the required structures requires that these alloys be weldable. Furthermore, since the plasma is influenced by magnetic fields and since magnet ic forces from the use of ferromagnetic materials in many configur ations may be additive, the best structural alloy for most applica tions should be nonmagnetic. These requirements have led to consideration of higher strength austenitic steels. Strength increases at low temperatures are achieved by the addition of nitrogen. The stability of the austenitic structure is retained by adding manganese instead of nickel, which is more expensive. Research to develop these higher strength austenitic steels is in process, primarily in Japan and the United States.
Stainless Steel 2000
Author: Tom Bell
Publisher: CRC Press
ISBN: 100072493X
Category : Technology & Engineering
Languages : en
Pages : 428
Book Description
Austenitic stainless steels lend themselves to a wide range of applications. However, they normally stiffer from poor wear resistance and do not respond well to traditional surface treatments. This volume. the fruit of a current status seminar, reflects the enormous strides which have been made in the last few years in the study of the expanded austenite phase (also called the S phase) and the development of new surface treatment techniques. As well as the papers presented at the seminar, the book contains selection from related papers and a comprehensive bibliography of the literature on the subject from 1979 to 2000.
Publisher: CRC Press
ISBN: 100072493X
Category : Technology & Engineering
Languages : en
Pages : 428
Book Description
Austenitic stainless steels lend themselves to a wide range of applications. However, they normally stiffer from poor wear resistance and do not respond well to traditional surface treatments. This volume. the fruit of a current status seminar, reflects the enormous strides which have been made in the last few years in the study of the expanded austenite phase (also called the S phase) and the development of new surface treatment techniques. As well as the papers presented at the seminar, the book contains selection from related papers and a comprehensive bibliography of the literature on the subject from 1979 to 2000.
Compensation Systems for Low Temperature Applications
Author: Balzej T. Skoczen
Publisher: Springer Science & Business Media
ISBN: 3662063050
Category : Science
Languages : en
Pages : 303
Book Description
The present monograph is mainly focused on the behaviour of ductile ma terials at cryogenic temperatures, stability issues concerning application of corrugated shells at cryogenic conditions and reliability oriented parametric optimisation of compensation systems containing the corrugated bellows. As there are relatively few publications on combined material and structural be haviour at very low temperatures, the monograph aims at filling this gap. It is worth pointing out that within the class of publications dedicated to low temperature behaviour of materials and structures the majority is based on testing down to the temperature of liquid nitrogen (77 K). Rare publications deal with the analysis of material and structural response at the temperature of liquid helium (4. 5 K) or superfluid helium (below the point T>. , = 2. 17 K). This can be explained by the fact that an (by its nature complex) installation for testing at such low temperatures is very expensive. Only the large research centres and universities, working in the domain of superconductivity, cryogen ics or developing superconducting magnets for particle accelerators, can afford such installations. A significant part of the present monograph is dedicated to the analy sis of the phenomena associated with plastic yielding in stainless steels at cryogenic temperatures. Generally, three phenomena are distinguished: plas tic strain induced phase transformations, serrated yielding and evolution of ductile damage.
Publisher: Springer Science & Business Media
ISBN: 3662063050
Category : Science
Languages : en
Pages : 303
Book Description
The present monograph is mainly focused on the behaviour of ductile ma terials at cryogenic temperatures, stability issues concerning application of corrugated shells at cryogenic conditions and reliability oriented parametric optimisation of compensation systems containing the corrugated bellows. As there are relatively few publications on combined material and structural be haviour at very low temperatures, the monograph aims at filling this gap. It is worth pointing out that within the class of publications dedicated to low temperature behaviour of materials and structures the majority is based on testing down to the temperature of liquid nitrogen (77 K). Rare publications deal with the analysis of material and structural response at the temperature of liquid helium (4. 5 K) or superfluid helium (below the point T>. , = 2. 17 K). This can be explained by the fact that an (by its nature complex) installation for testing at such low temperatures is very expensive. Only the large research centres and universities, working in the domain of superconductivity, cryogen ics or developing superconducting magnets for particle accelerators, can afford such installations. A significant part of the present monograph is dedicated to the analy sis of the phenomena associated with plastic yielding in stainless steels at cryogenic temperatures. Generally, three phenomena are distinguished: plas tic strain induced phase transformations, serrated yielding and evolution of ductile damage.
Austenitic Stainless Steels
Author: Wojciech Borek
Publisher: BoD – Books on Demand
ISBN: 9535137018
Category : Technology & Engineering
Languages : en
Pages : 219
Book Description
Stainless steel is still one of the fastest growing materials. Today, the austenitic stainless steel with the classic composition of 18% Cr and 8% Ni (grade 304L) is still the most widely used by far in the world. The unique characteristic of stainless steel arises from three main factors. The versatility results from high corrosion resistance, excellent low- and high-temperature properties, high toughness, formability, and weldability. The long life of stainless steels has been proven in service in a wide range of environments, together with low maintenance costs compared to other highly alloyed metallic materials. The retained value of stainless steel results from the high intrinsic value and easy recycling. Stainless steel, especially of austenitic microstructure, plays a crucial role in achieving sustainable development nowadays, so it is also important for further generations.
Publisher: BoD – Books on Demand
ISBN: 9535137018
Category : Technology & Engineering
Languages : en
Pages : 219
Book Description
Stainless steel is still one of the fastest growing materials. Today, the austenitic stainless steel with the classic composition of 18% Cr and 8% Ni (grade 304L) is still the most widely used by far in the world. The unique characteristic of stainless steel arises from three main factors. The versatility results from high corrosion resistance, excellent low- and high-temperature properties, high toughness, formability, and weldability. The long life of stainless steels has been proven in service in a wide range of environments, together with low maintenance costs compared to other highly alloyed metallic materials. The retained value of stainless steel results from the high intrinsic value and easy recycling. Stainless steel, especially of austenitic microstructure, plays a crucial role in achieving sustainable development nowadays, so it is also important for further generations.
High Interstitial Stainless Austenitic Steels
Author: Hans Berns
Publisher: Springer Science & Business Media
ISBN: 3642337015
Category : Technology & Engineering
Languages : en
Pages : 169
Book Description
High Interstitial Stainless Austenitic Steels is of interest to all engineers and resaerchers working with stainless steel, either at universities or R&D departments in Industry. The new applications described appeal to design engineers while procees engineers find interesting challenges. These novel steels enter more and more industrial applications. Their development is presented by this book in its entirety, starting from the electronic scale of components. This makes it particlularly attractive to Materials Scientists and Metal Physicists.
Publisher: Springer Science & Business Media
ISBN: 3642337015
Category : Technology & Engineering
Languages : en
Pages : 169
Book Description
High Interstitial Stainless Austenitic Steels is of interest to all engineers and resaerchers working with stainless steel, either at universities or R&D departments in Industry. The new applications described appeal to design engineers while procees engineers find interesting challenges. These novel steels enter more and more industrial applications. Their development is presented by this book in its entirety, starting from the electronic scale of components. This makes it particlularly attractive to Materials Scientists and Metal Physicists.
Stainless Steels and Alloys
Author: Zoia Duriagina
Publisher: BoD – Books on Demand
ISBN: 1789853699
Category : Technology & Engineering
Languages : en
Pages : 160
Book Description
Materials science is the magic that allows us to change the chemical composition and microstructure of material to regulate its corrosion-mechanical, technological, and functional properties. Five major classes of stainless steels are widely used: ferritic, austenitic, martensitic, duplex, and precipitation hardening. Austenitic stainless steels are extensively used for service down to as low as the temperature of liquid helium (-269oC). This is largely due to the lack of a clearly defined transition from ductile to brittle fracture in impact toughness testing. Steels with ferritic or martensitic structures show a sudden change from ductile (safe) to brittle (unsafe) fracture over a small temperature difference. Even the best of these steels shows this behavior at temperatures higher than -100oC and in many cases only just below zero. Various types of stainless steel are used across the whole temperature range from ambient to 1100oC. This book will be useful to scientists, engineers, masters, graduate students, and students. I hope readers will enjoy this book and that it will serve to create new materials with unique properties.
Publisher: BoD – Books on Demand
ISBN: 1789853699
Category : Technology & Engineering
Languages : en
Pages : 160
Book Description
Materials science is the magic that allows us to change the chemical composition and microstructure of material to regulate its corrosion-mechanical, technological, and functional properties. Five major classes of stainless steels are widely used: ferritic, austenitic, martensitic, duplex, and precipitation hardening. Austenitic stainless steels are extensively used for service down to as low as the temperature of liquid helium (-269oC). This is largely due to the lack of a clearly defined transition from ductile to brittle fracture in impact toughness testing. Steels with ferritic or martensitic structures show a sudden change from ductile (safe) to brittle (unsafe) fracture over a small temperature difference. Even the best of these steels shows this behavior at temperatures higher than -100oC and in many cases only just below zero. Various types of stainless steel are used across the whole temperature range from ambient to 1100oC. This book will be useful to scientists, engineers, masters, graduate students, and students. I hope readers will enjoy this book and that it will serve to create new materials with unique properties.
Mechanical Properties of Structural Materials at Low Temperatures
Author: Ralph Michael McClintock
Publisher:
ISBN:
Category : Metals
Languages : en
Pages : 202
Book Description
Publisher:
ISBN:
Category : Metals
Languages : en
Pages : 202
Book Description
Corrosion of Austenitic Stainless Steels
Author: H S Khatak
Publisher: Woodhead Publishing
ISBN: 9781855736139
Category : Science
Languages : en
Pages : 436
Book Description
This comprehensive study covers all types of corrosion of austenitic stainless steel. It also covers methods for detecting corrosion and investigating corrosion-related failure, together with guidelines for improving corrosion protection of steels. Details all types of corrosion of austenitic stainless steel Covers methods for detecting corrosion and investigating corrosion-related failure Outlines guidelines for improving corrosion protection of steels
Publisher: Woodhead Publishing
ISBN: 9781855736139
Category : Science
Languages : en
Pages : 436
Book Description
This comprehensive study covers all types of corrosion of austenitic stainless steel. It also covers methods for detecting corrosion and investigating corrosion-related failure, together with guidelines for improving corrosion protection of steels. Details all types of corrosion of austenitic stainless steel Covers methods for detecting corrosion and investigating corrosion-related failure Outlines guidelines for improving corrosion protection of steels
Fatigue at Low Temperatures
Author: Ralph Ivan Stephens
Publisher: ASTM International
ISBN: 9780803104112
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
Publisher: ASTM International
ISBN: 9780803104112
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
Thermochemical Surface Engineering of Steels: Improving Materials Performance
Author: Eric J. Mittemeijer
Publisher: Woodhead Publishing
ISBN: 9780081013335
Category : Science
Languages : en
Pages : 550
Book Description
Thermochemical surface engineering significantly improves the properties of steels. Edited by two of the world s leading authorities, this important book summarises the range of techniques and their applications. It covers nitriding, nitrocarburizing and carburizing. There are also chapters on low temperature techniques as well as boriding, sheradizing, aluminizing, chromizing, thermo-reactive deposition and diffusion. Reviews the fundamentals of surface treatments and current performance of improved materialsCovers nitriding, nitrocarburizing and carburizing of iron and iron carbon alloysExamines how different thermochemical surface engineering methods can help against corrosion"
Publisher: Woodhead Publishing
ISBN: 9780081013335
Category : Science
Languages : en
Pages : 550
Book Description
Thermochemical surface engineering significantly improves the properties of steels. Edited by two of the world s leading authorities, this important book summarises the range of techniques and their applications. It covers nitriding, nitrocarburizing and carburizing. There are also chapters on low temperature techniques as well as boriding, sheradizing, aluminizing, chromizing, thermo-reactive deposition and diffusion. Reviews the fundamentals of surface treatments and current performance of improved materialsCovers nitriding, nitrocarburizing and carburizing of iron and iron carbon alloysExamines how different thermochemical surface engineering methods can help against corrosion"