Atomic and Electronic Structure of Surfaces

Atomic and Electronic Structure of Surfaces PDF Author: Michel Lannoo
Publisher: Springer Science & Business Media
ISBN: 3662027143
Category : Science
Languages : en
Pages : 267

Get Book

Book Description
Surfaces and interfaces play an increasingly important role in today's solid state devices. In this book the reader is introduced, in a didactic manner, to the essential theoretical aspects of the atomic and electronic structure of surfaces and interfaces. The book does not pretend to give a complete overview of contemporary problems and methods. Instead, the authors strive to provide simple but qualitatively useful arguments that apply to a wide variety of cases. The emphasis of the book is on semiconductor surfaces and interfaces but it also includes a thorough treatment of transition metals, a general discussion of phonon dispersion curves, and examples of large computational calculations. The exercises accompanying every chapter will be of great benefit to the student.

Atomic and Electronic Structure of Surfaces

Atomic and Electronic Structure of Surfaces PDF Author: Michel Lannoo
Publisher: Springer Science & Business Media
ISBN: 3662027143
Category : Science
Languages : en
Pages : 267

Get Book

Book Description
Surfaces and interfaces play an increasingly important role in today's solid state devices. In this book the reader is introduced, in a didactic manner, to the essential theoretical aspects of the atomic and electronic structure of surfaces and interfaces. The book does not pretend to give a complete overview of contemporary problems and methods. Instead, the authors strive to provide simple but qualitatively useful arguments that apply to a wide variety of cases. The emphasis of the book is on semiconductor surfaces and interfaces but it also includes a thorough treatment of transition metals, a general discussion of phonon dispersion curves, and examples of large computational calculations. The exercises accompanying every chapter will be of great benefit to the student.

Semiconductor Surfaces and Interfaces

Semiconductor Surfaces and Interfaces PDF Author: Friedhelm Bechstedt
Publisher:
ISBN:
Category : Semiconductors
Languages : en
Pages : 484

Get Book

Book Description


Atomic and Electronic Structure of Solids

Atomic and Electronic Structure of Solids PDF Author: Efthimios Kaxiras
Publisher: Cambridge University Press
ISBN: 0521810108
Category : Science
Languages : en
Pages : 700

Get Book

Book Description
Graduate-level textbook for physicists, chemists and materials scientists.

Modern Techniques of Surface Science

Modern Techniques of Surface Science PDF Author: D. P. Woodruff
Publisher: Cambridge University Press
ISBN: 9780521424981
Category : Science
Languages : en
Pages : 612

Get Book

Book Description
Revised and expanded second edition of the standard work on new techniques for studying solid surfaces.

Electronic Structure of Disordered Alloys, Surfaces and Interfaces

Electronic Structure of Disordered Alloys, Surfaces and Interfaces PDF Author: Ilja Turek
Publisher: Springer Science & Business Media
ISBN: 1461562554
Category : Science
Languages : en
Pages : 327

Get Book

Book Description
At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use because they require an excessive number of atoms per elementary cell, and are not able to account fully for e.g. substitu tional disorder and the true semiinfinite geometry of surfaces. Such problems can be solved more appropriately by Green function techniques and multiple scattering formalism.

Electronic Structure and the Properties of Solids

Electronic Structure and the Properties of Solids PDF Author: Walter A. Harrison
Publisher: Courier Corporation
ISBN: 0486141780
Category : Science
Languages : en
Pages : 610

Get Book

Book Description
This text offers basic understanding of the electronic structure of covalent and ionic solids, simple metals, transition metals and their compounds; also explains how to calculate dielectric, conducting, bonding properties.

Electronic Structure of Alloys, Surfaces and Clusters

Electronic Structure of Alloys, Surfaces and Clusters PDF Author: Abhijit Mookerjee
Publisher: CRC Press
ISBN: 1482288125
Category : Technology & Engineering
Languages : en
Pages : 384

Get Book

Book Description
Understanding the electronic structure of solids is a basic part of theoretical investigation in physics. Application of investigative techniques requires the solid under investigation to be "periodic." However, this is not always the case. This volume addresses three classes of "non-periodic" solids currently undergoing the most study: alloys, sur

Concepts in Surface Physics

Concepts in Surface Physics PDF Author: M.-C. Desjonqueres
Publisher: Springer Science & Business Media
ISBN: 3642614000
Category : Science
Languages : en
Pages : 621

Get Book

Book Description
A tutorial treatment of the main concepts of the physics of crystal surfaces. Emphasis is placed on simplified calculations and the corresponding detailed analytical derivations, that are able to throw light on the most important physical mechanisms. More rigorous techniques, which often require a large amount of computer time, are also explained. Wherever possible, the theory is compared to practice, with the experimental methods being described from a theoretical rather than a technical viewpoint. The topics treated include thermodynamic and statistical properties of clean and adsorbate-covered surfaces, atomic structure, vibrational properties, electronic structure, and the theory of physisorption and chemisorption. The whole is rounded off with new excercises.

Atomic and Electronic Structure of Solids

Atomic and Electronic Structure of Solids PDF Author: Efthimios Kaxiras
Publisher:
ISBN: 9780521810104
Category : Science
Languages : en
Pages : 676

Get Book

Book Description
Graduate-level textbook for physicists, chemists and materials scientists.

Atomic and electronic structures of two-dimensional layers on noble metals

Atomic and electronic structures of two-dimensional layers on noble metals PDF Author: Jalil Shah
Publisher: Linköping University Electronic Press
ISBN: 917685048X
Category :
Languages : en
Pages : 67

Get Book

Book Description
Two-dimensional (2D) materials, in the form of a single atomic layer with a crystalline structure, are of interest for electronic applications. Such materials can be formed by a single element, e.g., by group IV or group V elements, or as a 2D surface alloy. As these materials consist of just a single atomic layer, they may have unique properties that are not present in the bulk. The (111) surfaces of the noble metals Ag and Au are important for the preparation of several 2D materials. To investigate the atomic and electronic structures, the following experimental techniques were used in this thesis: angle resolved photoelectron spectroscopy (ARPES), scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The 2D structures studied in this thesis include arsenene (an As analogue to graphene) and As/Ag(111), Sn/Au(111), and Te/Ag(111) surface alloys. Arsenene has been thoroughly investigated theoretically for many years and several interesting properties important for next generation electronic and optoelectronic devices have been described in the literature. This thesis presents the first experimental evidence of the formation of arsenene. A clean Ag(111) surface was exposed to arsenic in an ultra-high vacuum chamber at an elevated substrate temperature (250 to 350 °C ). The resulting arsenic layer was studied by LEED, STM and ARPES. Both LEED and STM data resulted in a lattice constant of the arsenic layer of 3.6 Å which is consistent with the formation of arsenene. A comparison between the experimental band structure obtained by ARPES and the theoretical band structure of arsenene based on density functional theory (DFT), further verified the formation of arsenene. The As/Ag(111) surface alloy was prepared by exposing clean Ag(111) to arsenic followed by heating to 400 °C. This resulted in an Ag2As surface alloy which formed by the replacement of every third Ag atom by an As atom in a periodic fashion. LEED showed a complex pattern of diffraction spots corresponding to a superposition of three domains of a reconstruction described by a unit cell. STM images revealed a surface with a striped atomic structure with ridges characterized by a local ?3 × ?3 structure. ARPES data showed three alloy related bands of which one can be associated with the ?3 × ?3 structure on the ridges. This band shows a split in momentum space around the point along the direction of a ?3 × ?3 surface Brillouin zone in similarity with a Ge/Ag(111) surface alloy. Sn/Au(111) surface alloys can be prepared with different periodicities. An Au2Sn phase characterized by a ?3 × ?3 periodicity and an Au3Sn phase with a 2 × 2 periodicity are formed containing 0.33 and 0.25 monolayer of Sn, respectively. The clean Au(111) surface itself, shows a complex reconstruction, the so called herringbone structure, that can be viewed as a zig-zag pattern of stripes described by a 22 × ?3 unit cell. The replacement of Au atoms by Sn results in change of the periodicity of the herringbone structure to 26 × ?3 and ? 26 × 2?3 for the Au2Sn and Au3Sn surface alloys, respectively. Furthermore, the local 1 × 1 periodicity of clean Au(111) is replaced by a ?3 × ?3 and a 2 × 2 periodicity as is clear from STM images of the respective cases. ARPES data are presented for the Au2Sn surface alloy, which reveal an electronic band structure with similarities to other striped surface alloys. In particular, the split in momentum space around the point of a ?3 × ?3 surface Brillouin zone is observed also for Au2Sn. A Te-Ag binary surface alloy can be formed by evaporating 1/3 monolayer of Te onto a clean Ag(111) surface followed by annealing. After this preparation, LEED showed sharp ?3 × ?3 diffraction spots that is evidence for a well-ordered surface layer. ARPES data revealed two distinct electronic bands that followed the ?3 × ?3 periodicity. One of these bands showed a small spin-split of the Rashba type. The experimental band structure was compared with the theoretical bands of several atomic models of Te induced structures on Ag(111). An excellent fit was obtained for a Te-Ag surface alloy with a planar honeycomb structure, with one Te and one Ag atom in the unit cell. A semiconducting electronic structure of the Te-Ag surface alloy was inferred from the ARPES data in agreement with the ?0.7 eV band gap predicted by the DFT calculations.