Assimilation of Multi-Sensor Data Into Numerical Hydrodynamic Models of Inland Water Bodies

Assimilation of Multi-Sensor Data Into Numerical Hydrodynamic Models of Inland Water Bodies PDF Author: Amir Javaheri
Publisher:
ISBN:
Category : Bodies of water
Languages : en
Pages : 100

Get Book Here

Book Description
Numerical models are effective tools for simulating complex physical processes such as hydrodynamic and water quality processes in aquatic systems. The accuracy of the model is dependent on multiple model parameters and variables that need to be calibrated and regularly updated to reproduce changing aquatic conditions accurately. Multi-sensor water temperature observations, such as remote sensing data and in situ monitoring technologies, can improve model accuracy by providing benefits of individual monitoring technology to the model updating process. In contrast to in-situ temperature sensors, remote sensing technologies (e.g., satellites) provide the benefit of collecting measurements with better X-Y spatial coverage. However, the temporal resolution of satellite data is limited comparing to in-situ measurements. Numerical models and all source of observations have large uncertainty coming from different sources such as errors of approximation and truncation, uncertain model inputs, error in measuring devices and etc. Data assimilation (DA) is able to sequentially update the model state variables by considering the uncertainty in model and observations and estimate the model states and outputs more accurately. Data Assimilation has been proposed for multiple water resources studies that require rapid employment of incoming observations to update and improve accuracy of operational prediction models. The usefulness of DA approaches in assimilating water temperature observations from different types of monitoring technologies (e.g., remote sensing and in-situ sensors) into numerical models of in-land water bodies (e.g., reservoirs, lakes, and rivers) has, however, received limited attention. Assimilating of water temperature measurements from satellites can introduce biases in the updated numerical model of water bodies because the physical region represented by these measurements do not directly correspond with the numerical model's representation of the water column. The main research objective of this study is to efficiently assimilate multi-sensor water temperature data into the hydrodynamic model of water bodies in order to improve the model accuracy. Four specific objectives were addressed in this work to accomplish the overall goal: * Objective 1: Propose a novel approach to address the representation challenge of model and measurements by coupling a skin temperature adjustment technique based on available air and in-situ water temperature observations, with an ensemble Kalman filter (EnKF) based data assimilation technique for reservoirs and lakes. * Objective 2: Investigate whether assimilation of remotely sensed temperature observations using the proposed data fusion approach can improve model accuracy with respect to in-situ temperature observations as well as remote sensing data. * Objective 3: Investigate a global sensitivity analysis tool that combines Latin-hypercube and one-factor-at-a-time sampling to investigate the most sensitive model inputs and parameters in calculating the water age and water temperature of shallow rivers. * Objective 4: Propose an efficient data assimilation framework to take the advantage of both monitoring technologies (e.g., remote sensing and in-situ measurements) to improve the model efficiency of shallow rivers. Results showed that the proposed adjustment approach used in this study for four-dimensional analysis of a reservoir provides reasonably accurate surface layer and water column temperature forecasts, in spite of the use of a fairly small ensemble. Assimilation of adjusted remote sensing data using ensemble Kalman Filter technique improved the overall root mean square difference between modeled surface layer temperatures and the adjusted remotely sensed skin temperature observations from 5.6 °C to 0.51 °C (i.e., 91% improvement). In addition, the overall error in the water column temperature predictions when compared with in-situ observations also decreased from 1.95 °C (before assimilation) to 1.42 °C (after assimilation), thereby, giving a 27% improvement in errors. In contrast, doing data assimilation without the proposed temperature adjustment would have increased this error to 1.98 °C (i.e., 1.5% deterioration). The most effective parameters to calculate water temperature were investigated and perturbed among the acceptable range to create the ensembles. Results show that water temperature is more sensitive to inflow temperature, air temperature, solar radiation, wind speed, flow rate, and wet bulb temperature respectively. Results also show in contrast to in-situ data assimilation, remote sensing data assimilation was able to effectively improve the spatial error of the model. Assimilation of in-situ observation improved the model efficiency at observation site. However, the model error increased by time and after less than two days, the model predictions of updated model were the same as base model before data assimilation. Hence, a maximum acceptable error between model and measurements was defined based on the application of model. Remote sensing data were assimilated into the model as they become available to improve the model accuracy for the entire river. In-situ data were also assimilated into the model when the error between model and observations exceeds the maximum error. Results showed that by assimilation of in-situ data one to three times per day, the average daily error reduced up to 58% comparing to situation that in-situ data were assimilated only once. In addition, the average spatial error reduced from 2.59 °C to 0.66 °C after assimilation of remote sensing data.

Assimilation of Multi-Sensor Data Into Numerical Hydrodynamic Models of Inland Water Bodies

Assimilation of Multi-Sensor Data Into Numerical Hydrodynamic Models of Inland Water Bodies PDF Author: Amir Javaheri
Publisher:
ISBN:
Category : Bodies of water
Languages : en
Pages : 100

Get Book Here

Book Description
Numerical models are effective tools for simulating complex physical processes such as hydrodynamic and water quality processes in aquatic systems. The accuracy of the model is dependent on multiple model parameters and variables that need to be calibrated and regularly updated to reproduce changing aquatic conditions accurately. Multi-sensor water temperature observations, such as remote sensing data and in situ monitoring technologies, can improve model accuracy by providing benefits of individual monitoring technology to the model updating process. In contrast to in-situ temperature sensors, remote sensing technologies (e.g., satellites) provide the benefit of collecting measurements with better X-Y spatial coverage. However, the temporal resolution of satellite data is limited comparing to in-situ measurements. Numerical models and all source of observations have large uncertainty coming from different sources such as errors of approximation and truncation, uncertain model inputs, error in measuring devices and etc. Data assimilation (DA) is able to sequentially update the model state variables by considering the uncertainty in model and observations and estimate the model states and outputs more accurately. Data Assimilation has been proposed for multiple water resources studies that require rapid employment of incoming observations to update and improve accuracy of operational prediction models. The usefulness of DA approaches in assimilating water temperature observations from different types of monitoring technologies (e.g., remote sensing and in-situ sensors) into numerical models of in-land water bodies (e.g., reservoirs, lakes, and rivers) has, however, received limited attention. Assimilating of water temperature measurements from satellites can introduce biases in the updated numerical model of water bodies because the physical region represented by these measurements do not directly correspond with the numerical model's representation of the water column. The main research objective of this study is to efficiently assimilate multi-sensor water temperature data into the hydrodynamic model of water bodies in order to improve the model accuracy. Four specific objectives were addressed in this work to accomplish the overall goal: * Objective 1: Propose a novel approach to address the representation challenge of model and measurements by coupling a skin temperature adjustment technique based on available air and in-situ water temperature observations, with an ensemble Kalman filter (EnKF) based data assimilation technique for reservoirs and lakes. * Objective 2: Investigate whether assimilation of remotely sensed temperature observations using the proposed data fusion approach can improve model accuracy with respect to in-situ temperature observations as well as remote sensing data. * Objective 3: Investigate a global sensitivity analysis tool that combines Latin-hypercube and one-factor-at-a-time sampling to investigate the most sensitive model inputs and parameters in calculating the water age and water temperature of shallow rivers. * Objective 4: Propose an efficient data assimilation framework to take the advantage of both monitoring technologies (e.g., remote sensing and in-situ measurements) to improve the model efficiency of shallow rivers. Results showed that the proposed adjustment approach used in this study for four-dimensional analysis of a reservoir provides reasonably accurate surface layer and water column temperature forecasts, in spite of the use of a fairly small ensemble. Assimilation of adjusted remote sensing data using ensemble Kalman Filter technique improved the overall root mean square difference between modeled surface layer temperatures and the adjusted remotely sensed skin temperature observations from 5.6 °C to 0.51 °C (i.e., 91% improvement). In addition, the overall error in the water column temperature predictions when compared with in-situ observations also decreased from 1.95 °C (before assimilation) to 1.42 °C (after assimilation), thereby, giving a 27% improvement in errors. In contrast, doing data assimilation without the proposed temperature adjustment would have increased this error to 1.98 °C (i.e., 1.5% deterioration). The most effective parameters to calculate water temperature were investigated and perturbed among the acceptable range to create the ensembles. Results show that water temperature is more sensitive to inflow temperature, air temperature, solar radiation, wind speed, flow rate, and wet bulb temperature respectively. Results also show in contrast to in-situ data assimilation, remote sensing data assimilation was able to effectively improve the spatial error of the model. Assimilation of in-situ observation improved the model efficiency at observation site. However, the model error increased by time and after less than two days, the model predictions of updated model were the same as base model before data assimilation. Hence, a maximum acceptable error between model and measurements was defined based on the application of model. Remote sensing data were assimilated into the model as they become available to improve the model accuracy for the entire river. In-situ data were also assimilated into the model when the error between model and observations exceeds the maximum error. Results showed that by assimilation of in-situ data one to three times per day, the average daily error reduced up to 58% comparing to situation that in-situ data were assimilated only once. In addition, the average spatial error reduced from 2.59 °C to 0.66 °C after assimilation of remote sensing data.

Numerical Modelling of Hydrodynamics for Water Resources

Numerical Modelling of Hydrodynamics for Water Resources PDF Author: Pilar Garcia Navarro
Publisher: CRC Press
ISBN: 020393217X
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
Overland flow modelling has been an active field of research for some years, but developments in numerical methods and computational resources have recently accelerated progress, producing models for different geometries and types of flows, such as simulations of canal and river networks. Flow in canals has traditionally been described using one-dimensional, depth-averaged, shallow water models; but a variety of simulation techniques now facilitate the management of hydrodynamic systems, providing models which incorporate complex geometry and diverse flows. Much effort has gone into elaborating canal operational rules based on decision support systems, with the dual aim of assuring water delivery and meeting flow control constraints. In natural water courses, water management problems are associated with the need to meet quality standards. Numerical modelling of advection-diffusion can be used to manage problems related to the movement of solutes in rivers and aquifers. The analysis of solute transport is used to safeguard the quality of surface and ground water and to help prevent eutrophication. Solute flow through the soil can be dynamically linked to overland flow for hydrological and agricultural applications. Advances in modelling also cast new light on sediment transport in rivers, exploring the complex dynamics of river bed erosion and deposition and assist in thee analysis of river-reservoir systems. All these issues are discussed in Numerical Modelling of Hydrodynamics for Water Resources, which will be useful to civil engineers, applied mathematicians, hydrologists, and physicists.

Applications in Water Systems Management and Modeling

Applications in Water Systems Management and Modeling PDF Author: Daniela Malcangio
Publisher: BoD – Books on Demand
ISBN: 1789230446
Category : Science
Languages : en
Pages : 142

Get Book Here

Book Description
With the growth of urbanization, industrialization, and intensive agricultural practices, all superficial, inland, and marine water bodies have become the repository for large quantities of every type of substance extraneous to the natural aquatic environment. The knowledge of hydrodynamics becomes crucial in this context, as it is the driving mechanism for the movement and transport of these matters and of sediments that become collectors of these substances, in a surface water system. The best way to understand these natural processes is via examples and case studies. This book deals with practical studies of hydrodynamic processes through physical and numerical models. Researchers, together with practicing engineers, will find this book useful in making a rapid assessment of different environmental water body problems.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1572

Get Book Here

Book Description


Data Assimilation for Parameter Estimation in Coastal Ocean Hydrodynamics Modeling

Data Assimilation for Parameter Estimation in Coastal Ocean Hydrodynamics Modeling PDF Author: Talea Lashea Mayo
Publisher:
ISBN:
Category :
Languages : en
Pages : 348

Get Book Here

Book Description
Coastal ocean models are used for a vast array of applications. These applications include modeling tidal and coastal flows, waves, and extreme events, such as tsunamis and hurricane storm surges. Tidal and coastal flows are the primary application of this work as they play a critical role in many practical research areas such as contaminant transport, navigation through intracoastal waterways, development of coastal structures (e.g. bridges, docks, and breakwaters), commercial fishing, and planning and execution of military operations in marine environments, in addition to recreational aquatic activities. Coastal ocean models are used to determine tidal amplitudes, time intervals between low and high tide, and the extent of the ebb and flow of tidal waters, often at specific locations of interest. However, modeling tidal flows can be quite complex, as factors such as the configuration of the coastline, water depth, ocean floor topography, and hydrographic and meteorological impacts can have significant effects and must all be considered. Water levels and currents in the coastal ocean can be modeled by solv- ing the shallow water equations. The shallow water equations contain many parameters, and the accurate estimation of both tides and storm surge is dependent on the accuracy of their specification. Of particular importance are the parameters used to define the bottom stress in the domain of interest [50]. These parameters are often heterogeneous across the seabed of the domain. Their values cannot be measured directly and relevant data can be expensive and difficult to obtain. The parameter values must often be inferred and the estimates are often inaccurate, or contain a high degree of uncertainty [28]. In addition, as is the case with many numerical models, coastal ocean models have various other sources of uncertainty, including the approximate physics, numerical discretization, and uncertain boundary and initial conditions. Quantifying and reducing these uncertainties is critical to providing more reliable and robust storm surge predictions. It is also important to reduce the resulting error in the forecast of the model state as much as possible. The accuracy of coastal ocean models can be improved using data assimilation methods. In general, statistical data assimilation methods are used to estimate the state of a model given both the original model output and observed data. A major advantage of statistical data assimilation methods is that they can often be implemented non-intrusively, making them relatively straightforward to implement. They also provide estimates of the uncertainty in the predicted model state. Unfortunately, with the exception of the estimation of initial conditions, they do not contribute to the information contained in the model. The model error that results from uncertain parameters is reduced, but information about the parameters in particular remains unknown. Thus, the other commonly used approach to reducing model error is parameter estimation. Historically, model parameters such as the bottom stress terms have been estimated using variational methods. Variational methods formulate a cost functional that penalizes the difference between the modeled and observed state, and then minimize this functional over the unknown parameters. Though variational methods are an effective approach to solving inverse problems, they can be computationally intensive and difficult to code as they generally require the development of an adjoint model. They also are not formulated to estimate parameters in real time, e.g. as a hurricane approaches landfall. The goal of this research is to estimate parameters defining the bottom stress terms using statistical data assimilation methods. In this work, we use a novel approach to estimate the bottom stress terms in the shallow water equations, which we solve numerically using the Advanced Circulation (ADCIRC) model. In this model, a modified form of the 2-D shallow water equations is discretized in space by a continuous Galerkin finite element method, and in time by finite differencing. We use the Manning's n formulation to represent the bottom stress terms in the model, and estimate various fields of Manning's n coefficients by assimilating synthetic water elevation data using a square root Kalman filter. We estimate three types of fields defined on both an idealized inlet and a more realistic spatial domain. For the first field, a Manning's n coefficient is given a constant value over the entire domain. For the second, we let the Manning's n coefficient take two distinct values, letting one define the bottom stress in the deeper water of the domain and the other define the bottom stress in the shallower region. And finally, because bottom stress terms are generally spatially varying parameters, we consider the third field as a realization of a stochastic process. We represent a realization of the process using a Karhunen-Loève expansion, and then seek to estimate the coefficients of the expansion. We perform several observation system simulation experiments, and find that we are able to accurately estimate the bottom stress terms in most of our test cases. Additionally, we are able to improve forecasts of the model state in every instance. The results of this study show that statistical data assimilation is a promising approach to parameter estimation.

3D Hydrodynamic, Temperature, and Water Quality Numerical Model for Surface Waterbodies

3D Hydrodynamic, Temperature, and Water Quality Numerical Model for Surface Waterbodies PDF Author:
Publisher:
ISBN:
Category : Hydrodynamics
Languages : en
Pages : 250

Get Book Here

Book Description
Numerical modeling has become a major tool for managing water quality in surface waterbodies such as rivers, lakes, reservoirs, and estuaries. Since the two-dimensional longitudinal/vertical model CE-QUAL-W2 is a well-known model and it has been applied to thousands of waterbodies around the world successfully, its numerical scheme was adapted to develop a new three-dimensional numerical model for simulating hydrodynamics, temperature, and water quality in surface waterbodies.

Numerical Modelling of Multi-body Hydrodynamics in Multi-phase Simulations

Numerical Modelling of Multi-body Hydrodynamics in Multi-phase Simulations PDF Author: Elin Theilen
Publisher:
ISBN: 9783892207214
Category :
Languages : en
Pages :

Get Book Here

Book Description


Data Assimilation

Data Assimilation PDF Author: Geir Evensen
Publisher: Springer Science & Business Media
ISBN: 3540383018
Category : Science
Languages : en
Pages : 285

Get Book Here

Book Description
This book reviews popular data-assimilation methods, such as weak and strong constraint variational methods, ensemble filters and smoothers. The author shows how different methods can be derived from a common theoretical basis, as well as how they differ or are related to each other, and which properties characterize them, using several examples. Readers will appreciate the included introductory material and detailed derivations in the text, and a supplemental web site.

International Aerospace Abstracts

International Aerospace Abstracts PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 934

Get Book Here

Book Description


Climatic Change and Global Warming of Inland Waters

Climatic Change and Global Warming of Inland Waters PDF Author: Charles R. Goldman
Publisher: John Wiley & Sons
ISBN: 1118470613
Category : Science
Languages : en
Pages : 481

Get Book Here

Book Description
Effects of global warming on the physical, chemical, ecological structure and function and biodiversity of freshwater ecosystems are not well understood and there are many opinions on how to adapt aquatic environments to global warming in order to minimize the negative effects of climate change. Climatic Change and Global Warming of Inland Waters presents a synthesis of the latest research on a whole range of inland water habitats – lakes, running water, wetlands – and offers novel and timely suggestions for future research, monitoring and adaptation strategies. A global approach, offered in this book, encompasses systems from the arctic to the Antarctic, including warm-water systems in the tropics and subtropics and presents a unique and useful source for all those looking for contemporary case studies and presentation of the latest research findings and discussion of mitigation and adaptation throughout the world. Edited by three of the leading limnologists in the field this book represents the latest developments with a focus not only on the impact of climate change on freshwater ecosystems but also offers a framework and suggestions for future management strategies and how these can be implemented in the future. Limnologists, Climate change biologists, fresh water ecologists, palaeoclimatologists and students taking relevant courses within the earth and environmental sciences will find this book invaluable. The book will also be of interest to planners, catchment managers and engineers looking for solutions to broader environmental problems but who need to consider freshwater ecology.