Aspects of Large Eddy Simulation of Homogeneous Isotropic Turbulence

Aspects of Large Eddy Simulation of Homogeneous Isotropic Turbulence PDF Author: M. Antonopoulos-Domis
Publisher:
ISBN:
Category :
Languages : en
Pages : 21

Get Book Here

Book Description

Aspects of Large Eddy Simulation of Homogeneous Isotropic Turbulence

Aspects of Large Eddy Simulation of Homogeneous Isotropic Turbulence PDF Author: M. Antonopoulos-Domis
Publisher:
ISBN:
Category :
Languages : en
Pages : 21

Get Book Here

Book Description


Improved Turbulence Models Based on Large Eddy Simulation of Homogeneous, Incompressible, Turbulent Flows

Improved Turbulence Models Based on Large Eddy Simulation of Homogeneous, Incompressible, Turbulent Flows PDF Author: Stanford University. Thermosciences Division. Thermosciences Division
Publisher:
ISBN:
Category : Eddies
Languages : en
Pages : 200

Get Book Here

Book Description
The physical bases of large eddy simulation and the subgrid scale modeling it employs are studied in some detail. This investigation leads to a new scale-similarity model for the subgrid-scale turbulent Reynolds stresses.

Large Eddy Simulation for Incompressible Flows

Large Eddy Simulation for Incompressible Flows PDF Author: P. Sagaut
Publisher: Springer Science & Business Media
ISBN: 9783540263449
Category : Computers
Languages : en
Pages : 600

Get Book Here

Book Description
First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."

Large Eddy Simulation for Compressible Flows

Large Eddy Simulation for Compressible Flows PDF Author: Eric Garnier
Publisher: Springer Science & Business Media
ISBN: 9048128196
Category : Science
Languages : en
Pages : 280

Get Book Here

Book Description
This book addresses both the fundamentals and the practical industrial applications of Large Eddy Simulation (LES) in order to bridge the gap between LES research and the growing need to use it in engineering modeling.

Large-Eddy Simulations of Turbulence

Large-Eddy Simulations of Turbulence PDF Author: M. Lesieur
Publisher: Cambridge University Press
ISBN: 9780521781244
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.

Direct and Large Eddy Simulation of Turbulence

Direct and Large Eddy Simulation of Turbulence PDF Author: NA Schumann
Publisher: Springer Science & Business Media
ISBN: 3663001970
Category : Technology & Engineering
Languages : en
Pages : 350

Get Book Here

Book Description
This volume contains papers presented to a EUROMECH-Colloquium held in Munich, September 30 to October 2, 1985. The Colloquium is number 199 in a series of colloquia inaugurated by the European Mechanics Committee. The meeting was jointly organized by the 'Lehrstuhl fur Stromungsmechanik' at the 'Technische Universitat Munchen' and the 'Institut fur Physik der Atmosphare' of the 'Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt' (DFVLR) in Oberpfaffenhofen. 'Direct' and 'large eddy simulation' are terms which denote two closely con nected methods of turbulence research. In a 'direct simulation' (DS), turbu lent motion is simulated by numerically integrating the Navier-Stokes equations in three-dimensional space and as a function of time. Besides ini tial and boundary conditions no physical simplifications are involved. Com puter resources limit the resolution in time and space, though simulations with an order of one million discrete points in space are feasible. The simu lated flow fields can be considered as true realizations of turbulent flow fields and analysed to answer questions on the basic behaviour of turbulence. Direct simulations are valid as long as all the excited scales remain within the band of resolved scales. This means that viscosity must be strong enough to damp out the not resolved scales or the simulation is restricted to a lim ited integration-time interval only. In summary, DS provides a tool to investigate turbulent motions from first principles at least for a finite band of scales.

Parametric Study of Decay of Homogeneous Isotropic Turbulence Using Large Eddy Simulation

Parametric Study of Decay of Homogeneous Isotropic Turbulence Using Large Eddy Simulation PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781719500807
Category :
Languages : en
Pages : 72

Get Book Here

Book Description
Numerical simulations of decaying homogeneous isotropic turbulence are performed with both low-order and high-order spatial discretization schemes. The turbulent Mach and Reynolds numbers for the simulations are 0.2 and 250, respectively. For the low-order schemes we use either second-order central or third-order upwind biased differencing. For higher order approximations we apply weighted essentially non-oscillatory (WENO) schemes, both with linear and nonlinear weights. There are two objectives in this preliminary effort to investigate possible schemes for large eddy simulation (LES). One is to explore the capability of a widely used low-order computational fluid dynamics (CFD) code to perform LES computations. The other is to determine the effect of higher order accuracy (fifth, seventh, and ninth order) achieved with high-order upwind biased WENO-based schemes. Turbulence statistics, such as kinetic energy, dissipation, and skewness, along with the energy spectra from simulations of the decaying turbulence problem are used to assess and compare the various numerical schemes. In addition, results from the best performing schemes are compared with those from a spectral scheme. The effects of grid density, ranging from 32 cubed to 192 cubed, on the computations are also examined. The fifth-order WENO-based scheme is found to be too dissipative, especially on the coarser grids. However, with the seventh-order and ninth-order WENO-based schemes we observe a significant improvement in accuracy relative to the lower order LES schemes, as revealed by the computed peak in the energy dissipation and by the energy spectrum. Swanson, R. C. and Rumsey, Christopher L. and Rubinstein, Robert and Balakumar, Ponnampalam and Zang, Thomas A. Langley Research Center COMPUTATIONAL FLUID DYNAMICS; HOMOGENEOUS TURBULENCE; ISOTROPIC TURBULENCE; LARGE EDDY SIMULATION; PARAMETERIZATION; DIRECT NUMERICAL SIMULATION; ESSENTIALLY NON-OSCILLATORY SCHEMES; ENERGY SPECTRA; NONLINEARITY; MACH N

Turbulence

Turbulence PDF Author: Christophe Bailly
Publisher: Springer
ISBN: 3319161601
Category : Technology & Engineering
Languages : en
Pages : 375

Get Book Here

Book Description
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3 and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarkable digital techniques current and experimental. Many results are presented in a practical way, based on both experiments and numerical simulations. The book is written for a advanced engineering students as well as postgraduate engineers and researchers. For students, it contains the essential results as well as details and demonstrations whose oral transmission is often tedious. At a more advanced level, the text provides numerous references which allow readers to find quickly further study regarding their work and to acquire a deeper knowledge on topics of interest.

Large Eddy Simulation of Complex Engineering and Geophysical Flows

Large Eddy Simulation of Complex Engineering and Geophysical Flows PDF Author: Boris Galperin
Publisher: Cambridge University Press
ISBN: 0521430097
Category : Technology & Engineering
Languages : en
Pages : 626

Get Book Here

Book Description
Originally published in 1993, this book was the first to offer a comprehensive review of large eddy simulations (LES) - the history, state of the art, and promising directions for research. Among topics covered are fundamentals of LES; LES of incompressible, compressible, and reacting flows; LES of atmospheric, oceanic, and environmental flows; and LES and massivelt parallel computing. The book grew out of an international workshop that, for the first time, brought together leading researchers in engineering and geophysics to discuss developments and applications of LES models in their respective fields. It will be of value to anyone with an interest in turbulence modelling.

Large Eddy Simulation for Incompressible Flows

Large Eddy Simulation for Incompressible Flows PDF Author: Pierre Sagaut
Publisher: Springer Science & Business Media
ISBN: 3662044161
Category : Science
Languages : en
Pages : 326

Get Book Here

Book Description
First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."