Author: Kamruzzaman, Joarder
Publisher: IGI Global
ISBN: 1591406722
Category : Computers
Languages : en
Pages : 299
Book Description
"This book presents a variety of practical applications of neural networks in two important domains of economic activity: finance and manufacturing"--Provided by publisher.
Artificial Neural Networks in Finance and Manufacturing
Author: Kamruzzaman, Joarder
Publisher: IGI Global
ISBN: 1591406722
Category : Computers
Languages : en
Pages : 299
Book Description
"This book presents a variety of practical applications of neural networks in two important domains of economic activity: finance and manufacturing"--Provided by publisher.
Publisher: IGI Global
ISBN: 1591406722
Category : Computers
Languages : en
Pages : 299
Book Description
"This book presents a variety of practical applications of neural networks in two important domains of economic activity: finance and manufacturing"--Provided by publisher.
Neural Networks in Finance
Author: Paul D. McNelis
Publisher: Academic Press
ISBN: 0124859674
Category : Business & Economics
Languages : en
Pages : 262
Book Description
This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong. * Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website
Publisher: Academic Press
ISBN: 0124859674
Category : Business & Economics
Languages : en
Pages : 262
Book Description
This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong. * Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website
Neural Smithing
Author: Russell Reed
Publisher: MIT Press
ISBN: 0262181908
Category : Computers
Languages : en
Pages : 359
Book Description
Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting behaviors. This book focuses on the subset of feedforward artificial neural networks called multilayer perceptrons (MLP). These are the mostly widely used neural networks, with applications as diverse as finance (forecasting), manufacturing (process control), and science (speech and image recognition). This book presents an extensive and practical overview of almost every aspect of MLP methodology, progressing from an initial discussion of what MLPs are and how they might be used to an in-depth examination of technical factors affecting performance. The book can be used as a tool kit by readers interested in applying networks to specific problems, yet it also presents theory and references outlining the last ten years of MLP research.
Publisher: MIT Press
ISBN: 0262181908
Category : Computers
Languages : en
Pages : 359
Book Description
Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting behaviors. This book focuses on the subset of feedforward artificial neural networks called multilayer perceptrons (MLP). These are the mostly widely used neural networks, with applications as diverse as finance (forecasting), manufacturing (process control), and science (speech and image recognition). This book presents an extensive and practical overview of almost every aspect of MLP methodology, progressing from an initial discussion of what MLPs are and how they might be used to an in-depth examination of technical factors affecting performance. The book can be used as a tool kit by readers interested in applying networks to specific problems, yet it also presents theory and references outlining the last ten years of MLP research.
Neural Networks in Business
Author: Kate A. Smith
Publisher: IGI Global
ISBN: 9781931777797
Category : Computers
Languages : en
Pages : 274
Book Description
"For professionals, students, and academics interested in applying neural networks to a variety of business applications, this reference book introduces the three most common neural network models and how they work. A wide range of business applications and a series of global case studies are presented to illustrate the neural network models provided. Each model or technique is discussed in detail and used to solve a business problem such as managing direct marketing, calculating foreign exchange rates, and improving cash flow forecasting."
Publisher: IGI Global
ISBN: 9781931777797
Category : Computers
Languages : en
Pages : 274
Book Description
"For professionals, students, and academics interested in applying neural networks to a variety of business applications, this reference book introduces the three most common neural network models and how they work. A wide range of business applications and a series of global case studies are presented to illustrate the neural network models provided. Each model or technique is discussed in detail and used to solve a business problem such as managing direct marketing, calculating foreign exchange rates, and improving cash flow forecasting."
Neural Networks in Finance and Investing
Author: Robert R. Trippi
Publisher: Irwin Professional Publishing
ISBN:
Category : Business & Economics
Languages : en
Pages : 872
Book Description
This completely updated version of the classic first edition offers a wealth of new material reflecting the latest developments in teh field. For investment professionals seeking to maximize this exciting new technology, this handbook is the definitive information source.
Publisher: Irwin Professional Publishing
ISBN:
Category : Business & Economics
Languages : en
Pages : 872
Book Description
This completely updated version of the classic first edition offers a wealth of new material reflecting the latest developments in teh field. For investment professionals seeking to maximize this exciting new technology, this handbook is the definitive information source.
Machine Learning in Finance
Author: Matthew F. Dixon
Publisher: Springer Nature
ISBN: 3030410684
Category : Business & Economics
Languages : en
Pages : 565
Book Description
This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.
Publisher: Springer Nature
ISBN: 3030410684
Category : Business & Economics
Languages : en
Pages : 565
Book Description
This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.
Empirical Asset Pricing
Author: Wayne Ferson
Publisher: MIT Press
ISBN: 0262039370
Category : Business & Economics
Languages : en
Pages : 497
Book Description
An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
Publisher: MIT Press
ISBN: 0262039370
Category : Business & Economics
Languages : en
Pages : 497
Book Description
An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
The Economics of Artificial Intelligence
Author: Ajay Agrawal
Publisher: University of Chicago Press
ISBN: 0226833127
Category : Business & Economics
Languages : en
Pages : 172
Book Description
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
Publisher: University of Chicago Press
ISBN: 0226833127
Category : Business & Economics
Languages : en
Pages : 172
Book Description
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance
Author: El Bachir Boukherouaa
Publisher: International Monetary Fund
ISBN: 1589063953
Category : Business & Economics
Languages : en
Pages : 35
Book Description
This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.
Publisher: International Monetary Fund
ISBN: 1589063953
Category : Business & Economics
Languages : en
Pages : 35
Book Description
This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.
Research Anthology on Artificial Neural Network Applications
Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1668424096
Category : Computers
Languages : en
Pages : 1575
Book Description
Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.
Publisher: IGI Global
ISBN: 1668424096
Category : Computers
Languages : en
Pages : 1575
Book Description
Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.