Author: George William Irwin
Publisher: IET
ISBN: 9780852968529
Category : Computers
Languages : en
Pages : 320
Book Description
The aim is to present an introduction to, and an overview of, the present state of neural network research and development, with an emphasis on control systems application studies. The book is useful to a range of levels of reader. The earlier chapters introduce the more popular networks and the fundamental control principles, these are followed by a series of application studies, most of which are industrially based, and the book concludes with a consideration of some recent research.
Neural Network Applications in Control
Author: George William Irwin
Publisher: IET
ISBN: 9780852968529
Category : Computers
Languages : en
Pages : 320
Book Description
The aim is to present an introduction to, and an overview of, the present state of neural network research and development, with an emphasis on control systems application studies. The book is useful to a range of levels of reader. The earlier chapters introduce the more popular networks and the fundamental control principles, these are followed by a series of application studies, most of which are industrially based, and the book concludes with a consideration of some recent research.
Publisher: IET
ISBN: 9780852968529
Category : Computers
Languages : en
Pages : 320
Book Description
The aim is to present an introduction to, and an overview of, the present state of neural network research and development, with an emphasis on control systems application studies. The book is useful to a range of levels of reader. The earlier chapters introduce the more popular networks and the fundamental control principles, these are followed by a series of application studies, most of which are industrially based, and the book concludes with a consideration of some recent research.
Artificial Neural Networks for Computer Vision
Author: Yi-Tong Zhou
Publisher: Springer Science & Business Media
ISBN: 1461228344
Category : Computers
Languages : en
Pages : 180
Book Description
This monograph is an outgrowth of the authors' recent research on the de velopment of algorithms for several low-level vision problems using artificial neural networks. Specific problems considered are static and motion stereo, computation of optical flow, and deblurring an image. From a mathematical point of view, these inverse problems are ill-posed according to Hadamard. Researchers in computer vision have taken the "regularization" approach to these problems, where one comes up with an appropriate energy or cost function and finds a minimum. Additional constraints such as smoothness, integrability of surfaces, and preservation of discontinuities are added to the cost function explicitly or implicitly. Depending on the nature of the inver sion to be performed and the constraints, the cost function could exhibit several minima. Optimization of such nonconvex functions can be quite involved. Although progress has been made in making techniques such as simulated annealing computationally more reasonable, it is our view that one can often find satisfactory solutions using deterministic optimization algorithms.
Publisher: Springer Science & Business Media
ISBN: 1461228344
Category : Computers
Languages : en
Pages : 180
Book Description
This monograph is an outgrowth of the authors' recent research on the de velopment of algorithms for several low-level vision problems using artificial neural networks. Specific problems considered are static and motion stereo, computation of optical flow, and deblurring an image. From a mathematical point of view, these inverse problems are ill-posed according to Hadamard. Researchers in computer vision have taken the "regularization" approach to these problems, where one comes up with an appropriate energy or cost function and finds a minimum. Additional constraints such as smoothness, integrability of surfaces, and preservation of discontinuities are added to the cost function explicitly or implicitly. Depending on the nature of the inver sion to be performed and the constraints, the cost function could exhibit several minima. Optimization of such nonconvex functions can be quite involved. Although progress has been made in making techniques such as simulated annealing computationally more reasonable, it is our view that one can often find satisfactory solutions using deterministic optimization algorithms.
Efficient Processing of Deep Neural Networks
Author: Vivienne Sze
Publisher: Springer Nature
ISBN: 3031017668
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Publisher: Springer Nature
ISBN: 3031017668
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Speech Processing, Recognition and Artificial Neural Networks
Author: Gerard Chollet
Publisher: Springer Science & Business Media
ISBN: 1447108450
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Speech Processing, Recognition and Artificial Neural Networks contains papers from leading researchers and selected students, discussing the experiments, theories and perspectives of acoustic phonetics as well as the latest techniques in the field of spe ech science and technology. Topics covered in this book include; Fundamentals of Speech Analysis and Perceptron; Speech Processing; Stochastic Models for Speech; Auditory and Neural Network Models for Speech; Task-Oriented Applications of Automatic Speech Recognition and Synthesis.
Publisher: Springer Science & Business Media
ISBN: 1447108450
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Speech Processing, Recognition and Artificial Neural Networks contains papers from leading researchers and selected students, discussing the experiments, theories and perspectives of acoustic phonetics as well as the latest techniques in the field of spe ech science and technology. Topics covered in this book include; Fundamentals of Speech Analysis and Perceptron; Speech Processing; Stochastic Models for Speech; Auditory and Neural Network Models for Speech; Task-Oriented Applications of Automatic Speech Recognition and Synthesis.
Neural Networks for Vision, Speech and Natural Language
Author: R. Linggard
Publisher: Springer Science & Business Media
ISBN: 9401123608
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
This book is a collection of chapters describing work carried out as part of a large project at BT Laboratories to study the application of connectionist methods to problems in vision, speech and natural language processing. Also, since the theoretical formulation and the hardware realization of neural networks are significant tasks in themselves, these problems too were addressed. The book, therefore, is divided into five Parts, reporting results in vision, speech, natural language, hardware implementation and network architectures. The three editors of this book have, at one time or another, been involved in planning and running the connectionist project. From the outset, we were concerned to involve the academic community as widely as possible, and consequently, in its first year, over thirty university research groups were funded for small scale studies on the various topics. Co-ordinating such a widely spread project was no small task, and in order to concentrate minds and resources, sets of test problems were devised which were typical of the application areas and were difficult enough to be worthy of study. These are described in the text, and constitute one of the successes of the project.
Publisher: Springer Science & Business Media
ISBN: 9401123608
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
This book is a collection of chapters describing work carried out as part of a large project at BT Laboratories to study the application of connectionist methods to problems in vision, speech and natural language processing. Also, since the theoretical formulation and the hardware realization of neural networks are significant tasks in themselves, these problems too were addressed. The book, therefore, is divided into five Parts, reporting results in vision, speech, natural language, hardware implementation and network architectures. The three editors of this book have, at one time or another, been involved in planning and running the connectionist project. From the outset, we were concerned to involve the academic community as widely as possible, and consequently, in its first year, over thirty university research groups were funded for small scale studies on the various topics. Co-ordinating such a widely spread project was no small task, and in order to concentrate minds and resources, sets of test problems were devised which were typical of the application areas and were difficult enough to be worthy of study. These are described in the text, and constitute one of the successes of the project.
Unsupervised Learning
Author: Geoffrey Hinton
Publisher: MIT Press
ISBN: 9780262581684
Category : Medical
Languages : en
Pages : 420
Book Description
Since its founding in 1989 by Terrence Sejnowski, Neural Computation has become the leading journal in the field. Foundations of Neural Computation collects, by topic, the most significant papers that have appeared in the journal over the past nine years. This volume of Foundations of Neural Computation, on unsupervised learning algorithms, focuses on neural network learning algorithms that do not require an explicit teacher. The goal of unsupervised learning is to extract an efficient internal representation of the statistical structure implicit in the inputs. These algorithms provide insights into the development of the cerebral cortex and implicit learning in humans. They are also of interest to engineers working in areas such as computer vision and speech recognition who seek efficient representations of raw input data.
Publisher: MIT Press
ISBN: 9780262581684
Category : Medical
Languages : en
Pages : 420
Book Description
Since its founding in 1989 by Terrence Sejnowski, Neural Computation has become the leading journal in the field. Foundations of Neural Computation collects, by topic, the most significant papers that have appeared in the journal over the past nine years. This volume of Foundations of Neural Computation, on unsupervised learning algorithms, focuses on neural network learning algorithms that do not require an explicit teacher. The goal of unsupervised learning is to extract an efficient internal representation of the statistical structure implicit in the inputs. These algorithms provide insights into the development of the cerebral cortex and implicit learning in humans. They are also of interest to engineers working in areas such as computer vision and speech recognition who seek efficient representations of raw input data.
The International Conference on Image, Vision and Intelligent Systems (ICIVIS 2021)
Author: Jian Yao
Publisher: Springer Nature
ISBN: 9811669635
Category : Technology & Engineering
Languages : en
Pages : 1174
Book Description
This book is a collection of the papers accepted by the ICIVIS 2021—The International Conference on Image, Vision and Intelligent Systems held on June 15–17, 2021, in Changsha, China. The topics focus but are not limited to image, vision and intelligent systems. Each part can be used as an excellent reference by industry practitioners, university faculties, research fellows and undergraduates as well as graduate students who need to build a knowledge base of the most current advances and state-of-practice in the topics covered by this conference proceedings.
Publisher: Springer Nature
ISBN: 9811669635
Category : Technology & Engineering
Languages : en
Pages : 1174
Book Description
This book is a collection of the papers accepted by the ICIVIS 2021—The International Conference on Image, Vision and Intelligent Systems held on June 15–17, 2021, in Changsha, China. The topics focus but are not limited to image, vision and intelligent systems. Each part can be used as an excellent reference by industry practitioners, university faculties, research fellows and undergraduates as well as graduate students who need to build a knowledge base of the most current advances and state-of-practice in the topics covered by this conference proceedings.
Deep Learning for NLP and Speech Recognition
Author: Uday Kamath
Publisher: Springer
ISBN: 3030145964
Category : Computers
Languages : en
Pages : 640
Book Description
This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.
Publisher: Springer
ISBN: 3030145964
Category : Computers
Languages : en
Pages : 640
Book Description
This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.
Handbook of Pattern Recognition & Computer Vision
Author: Chi-hau Chen
Publisher: World Scientific
ISBN: 9810230710
Category : Computers
Languages : en
Pages : 1045
Book Description
Annotation. Presents the latest research findings in theory, techniques, algorithms, and major applications of pattern recognition and computer vision, as well as new hardware and architecture aspects. Contains sections on basic methods in pattern recognition and computer vision, nine recognition applications, inspection and robotic applications, and architectures and technology. Some areas discussed include cluster analysis, 3D vision of dynamic objects, speech recognition, computer vision in food handling, and video content analysis and retrieval. This second edition is extensively revised to describe progress in the field since 1993. Chen is affiliated with the electrical and computer engineering department at the University of Massachusetts-Dartmouth. Annotation copyrighted by Book News, Inc., Portland, OR.
Publisher: World Scientific
ISBN: 9810230710
Category : Computers
Languages : en
Pages : 1045
Book Description
Annotation. Presents the latest research findings in theory, techniques, algorithms, and major applications of pattern recognition and computer vision, as well as new hardware and architecture aspects. Contains sections on basic methods in pattern recognition and computer vision, nine recognition applications, inspection and robotic applications, and architectures and technology. Some areas discussed include cluster analysis, 3D vision of dynamic objects, speech recognition, computer vision in food handling, and video content analysis and retrieval. This second edition is extensively revised to describe progress in the field since 1993. Chen is affiliated with the electrical and computer engineering department at the University of Massachusetts-Dartmouth. Annotation copyrighted by Book News, Inc., Portland, OR.
Artificial Intelligence in the Age of Neural Networks and Brain Computing
Author: Robert Kozma
Publisher: Academic Press
ISBN: 0323958168
Category : Computers
Languages : en
Pages : 398
Book Description
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Publisher: Academic Press
ISBN: 0323958168
Category : Computers
Languages : en
Pages : 398
Book Description
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks