Machine Learning Methods in the Environmental Sciences

Machine Learning Methods in the Environmental Sciences PDF Author: William W. Hsieh
Publisher: Cambridge University Press
ISBN: 0521791928
Category : Computers
Languages : en
Pages : 364

Get Book Here

Book Description
A graduate textbook that provides a unified treatment of machine learning methods and their applications in the environmental sciences.

Machine Learning Methods in the Environmental Sciences

Machine Learning Methods in the Environmental Sciences PDF Author: William W. Hsieh
Publisher: Cambridge University Press
ISBN: 0521791928
Category : Computers
Languages : en
Pages : 364

Get Book Here

Book Description
A graduate textbook that provides a unified treatment of machine learning methods and their applications in the environmental sciences.

Artificial Intelligence Methods in the Environmental Sciences

Artificial Intelligence Methods in the Environmental Sciences PDF Author: Sue Ellen Haupt
Publisher: Springer Science & Business Media
ISBN: 1402091192
Category : Science
Languages : en
Pages : 418

Get Book Here

Book Description
How can environmental scientists and engineers use the increasing amount of available data to enhance our understanding of planet Earth, its systems and processes? This book describes various potential approaches based on artificial intelligence (AI) techniques, including neural networks, decision trees, genetic algorithms and fuzzy logic. Part I contains a series of tutorials describing the methods and the important considerations in applying them. In Part II, many practical examples illustrate the power of these techniques on actual environmental problems. International experts bring to life ways to apply AI to problems in the environmental sciences. While one culture entwines ideas with a thread, another links them with a red line. Thus, a “red thread“ ties the book together, weaving a tapestry that pictures the ‘natural’ data-driven AI methods in the light of the more traditional modeling techniques, and demonstrating the power of these data-based methods.

Computers in Earth and Environmental Sciences

Computers in Earth and Environmental Sciences PDF Author: Hamid Reza Pourghasemi
Publisher: Elsevier
ISBN: 0323898610
Category : Computers
Languages : en
Pages : 702

Get Book Here

Book Description
Computers in Earth and Environmental Sciences: Artificial Intelligence and Advanced Technologies in Hazards and Risk Management addresses the need for a comprehensive book that focuses on multi-hazard assessments, natural and manmade hazards, and risk management using new methods and technologies that employ GIS, artificial intelligence, spatial modeling, machine learning tools and meta-heuristic techniques. The book is clearly organized into four parts that cover natural hazards, environmental hazards, advanced tools and technologies in risk management, and future challenges in computer applications to hazards and risk management. Researchers and professionals in Earth and Environmental Science who require the latest technologies and advances in hazards, remote sensing, geosciences, spatial modeling and machine learning will find this book to be an invaluable source of information on the latest tools and technologies available. Covers advanced tools and technologies in risk management of hazards in both the Earth and Environmental Sciences Details the benefits and applications of various technologies to assist researchers in choosing the most appropriate techniques for purpose Expansively covers specific future challenges in the use of computers in Earth and Environmental Science Includes case studies that detail the applications of the discussed technologies down to individual hazards

Handbook of Research on Artificial Intelligence Techniques and Algorithms

Handbook of Research on Artificial Intelligence Techniques and Algorithms PDF Author: Vasant, Pandian
Publisher: IGI Global
ISBN: 1466672595
Category : Computers
Languages : en
Pages : 913

Get Book Here

Book Description
For decades, optimization methods such as Fuzzy Logic, Artificial Neural Networks, Firefly, Simulated annealing, and Tabu search, have been capable of handling and tackling a wide range of real-world application problems in society and nature. Analysts have turned to these problem-solving techniques in the event during natural disasters and chaotic systems research. The Handbook of Research on Artificial Intelligence Techniques and Algorithms highlights the cutting edge developments in this promising research area. This premier reference work applies Meta-heuristics Optimization (MO) Techniques to real world problems in a variety of fields including business, logistics, computer science, engineering, and government. This work is particularly relevant to researchers, scientists, decision-makers, managers, and practitioners.

Artificial Intelligence: Theory and Applications

Artificial Intelligence: Theory and Applications PDF Author: Endre Pap
Publisher: Springer Nature
ISBN: 3030727114
Category : Technology & Engineering
Languages : en
Pages : 352

Get Book Here

Book Description
This book is an up-to-date collection, in AI and environmental research, related to the project ATLAS. AI is used for gaining an understanding of complex research phenomena in the environmental sciences, encompassing heterogeneous, noisy, inaccurate, uncertain, diverse spatio-temporal data and processes. The first part of the book covers new mathematics in the field of AI: aggregation functions with special classes such as triangular norms and copulas, pseudo-analysis, and the introduction to fuzzy systems and decision making. Generalizations of the Choquet integral with applications in decision making as CPT are presented. The second part of the book is devoted to AI in the geo-referenced air pollutants and meteorological data, image processing, machine learning, neural networks, swarm intelligence, robotics, mental well-being and data entry errors. The book is intended for researchers in AI and experts in environmental sciences as well as for Ph.D. students.

Deep Learning for the Earth Sciences

Deep Learning for the Earth Sciences PDF Author: Gustau Camps-Valls
Publisher: John Wiley & Sons
ISBN: 1119646162
Category : Technology & Engineering
Languages : en
Pages : 436

Get Book Here

Book Description
DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.

Artificial Intelligence Methods For Software Engineering

Artificial Intelligence Methods For Software Engineering PDF Author: Meir Kalech
Publisher: World Scientific
ISBN: 9811239932
Category : Computers
Languages : en
Pages : 457

Get Book Here

Book Description
Software is an integral part of our lives today. Modern software systems are highly complex and often pose new challenges in different aspects of Software Engineering (SE).Artificial Intelligence (AI) is a growing field in computer science that has been proven effective in applying and developing AI techniques to address various SE challenges.This unique compendium covers applications of state-of-the-art AI techniques to the key areas of SE (design, development, debugging, testing, etc).All the materials presented are up-to-date. This reference text will benefit researchers, academics, professionals, and postgraduate students in AI, machine learning and software engineering.Related Link(s)

Applications of Artificial Intelligence in Process Systems Engineering

Applications of Artificial Intelligence in Process Systems Engineering PDF Author: Jingzheng Ren
Publisher: Elsevier
ISBN: 012821743X
Category : Technology & Engineering
Languages : en
Pages : 542

Get Book Here

Book Description
Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering

Principles and Methods of Explainable Artificial Intelligence in Healthcare

Principles and Methods of Explainable Artificial Intelligence in Healthcare PDF Author: Albuquerque, Victor Hugo C. de
Publisher: IGI Global
ISBN: 1668437929
Category : Computers
Languages : en
Pages : 347

Get Book Here

Book Description
Explainable artificial intelligence is proficient in operating and analyzing the unconstrainted environment in fields like robotic medicine, robotic treatment, and robotic surgery, which rely on computational vision for analyzing complex situations. Explainable artificial intelligence is a well-structured customizable technology that makes it possible to generate promising unbiased outcomes. The model’s adaptability facilitates the management of heterogeneous healthcare data and the visualization of biological structures through virtual reality. Explainable artificial intelligence has newfound applications in the healthcare industry, such as clinical trial matching, continuous healthcare monitoring, probabilistic evolutions, and evidence-based mechanisms. Principles and Methods of Explainable Artificial Intelligence in Healthcare discusses explainable artificial intelligence and its applications in healthcare, providing a broad overview of state-of-the-art approaches for accurate analysis and diagnosis. The book also encompasses computational vision processing techniques that handle complex data like physiological information, electronic healthcare records, and medical imaging data that assist in earlier prediction. Covering topics such as neural networks and disease detection, this reference work is ideal for industry professionals, practitioners, academicians, researchers, scholars, instructors, and students.

Artificial Neural Networks in Biological and Environmental Analysis

Artificial Neural Networks in Biological and Environmental Analysis PDF Author: Grady Hanrahan
Publisher: CRC Press
ISBN: 1439812594
Category : Mathematics
Languages : en
Pages : 206

Get Book Here

Book Description
Originating from models of biological neural systems, artificial neural networks (ANN) are the cornerstones of artificial intelligence research. Catalyzed by the upsurge in computational power and availability, and made widely accessible with the co-evolution of software, algorithms, and methodologies, artificial neural networks have had a profound