Artificial Intelligence, Learning and Computation in Economics and Finance

Artificial Intelligence, Learning and Computation in Economics and Finance PDF Author: Ragupathy Venkatachalam
Publisher: Springer Nature
ISBN: 3031152948
Category : Science
Languages : en
Pages : 331

Get Book Here

Book Description
This book presents frontier research on the use of computational methods to model complex interactions in economics and finance. Artificial Intelligence, Machine Learning and simulations offer effective means of analyzing and learning from large as well as new types of data. These computational tools have permeated various subfields of economics, finance, and also across different schools of economic thought. Through 16 chapters written by pioneers in economics, finance, computer science, psychology, complexity and statistics/econometrics, the book introduces their original research and presents the findings they have yielded. Theoretical and empirical studies featured in this book draw on a variety of approaches such as agent-based modeling, numerical simulations, computable economics, as well as employing tools from artificial intelligence and machine learning algorithms. The use of computational approaches to perform counterfactual thought experiments are also introduced, which help transcend the limits posed by traditional mathematical and statistical tools. The book also includes discussions on methodology, epistemology, history and issues concerning prediction, validation, and inference, all of which have become pertinent with the increasing use of computational approaches in economic analysis.

Artificial Intelligence, Learning and Computation in Economics and Finance

Artificial Intelligence, Learning and Computation in Economics and Finance PDF Author: Ragupathy Venkatachalam
Publisher: Springer Nature
ISBN: 3031152948
Category : Science
Languages : en
Pages : 331

Get Book Here

Book Description
This book presents frontier research on the use of computational methods to model complex interactions in economics and finance. Artificial Intelligence, Machine Learning and simulations offer effective means of analyzing and learning from large as well as new types of data. These computational tools have permeated various subfields of economics, finance, and also across different schools of economic thought. Through 16 chapters written by pioneers in economics, finance, computer science, psychology, complexity and statistics/econometrics, the book introduces their original research and presents the findings they have yielded. Theoretical and empirical studies featured in this book draw on a variety of approaches such as agent-based modeling, numerical simulations, computable economics, as well as employing tools from artificial intelligence and machine learning algorithms. The use of computational approaches to perform counterfactual thought experiments are also introduced, which help transcend the limits posed by traditional mathematical and statistical tools. The book also includes discussions on methodology, epistemology, history and issues concerning prediction, validation, and inference, all of which have become pertinent with the increasing use of computational approaches in economic analysis.

Computational Economics: A Perspective from Computational Intelligence

Computational Economics: A Perspective from Computational Intelligence PDF Author: Chen, Shu-Heng
Publisher: IGI Global
ISBN: 159140651X
Category : Business & Economics
Languages : en
Pages : 338

Get Book Here

Book Description
"This book identifies the economic as well as financial problems that may be solved efficiently with computational methods and explains why those problems should best be solved with computational methods"--Provided by publisher.

Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance

Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance PDF Author: El Bachir Boukherouaa
Publisher: International Monetary Fund
ISBN: 1589063953
Category : Business & Economics
Languages : en
Pages : 35

Get Book Here

Book Description
This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.

Artificial Intelligence in Economics and Finance Theories

Artificial Intelligence in Economics and Finance Theories PDF Author: Tankiso Moloi
Publisher: Springer Nature
ISBN: 3030429628
Category : Computers
Languages : en
Pages : 131

Get Book Here

Book Description
As Artificial Intelligence (AI) seizes all aspects of human life, there is a fundamental shift in the way in which humans are thinking of and doing things. Ordinarily, humans have relied on economics and finance theories to make sense of, and predict concepts such as comparative advantage, long run economic growth, lack or distortion of information and failures, role of labour as a factor of production and the decision making process for the purpose of allocating resources among other theories. Of interest though is that literature has not attempted to utilize these advances in technology in order to modernize economic and finance theories that are fundamental in the decision making process for the purpose of allocating scarce resources among other things. With the simulated intelligence in machines, which allows machines to act like humans and to some extent even anticipate events better than humans, thanks to their ability to handle massive data sets, this book will use artificial intelligence to explain what these economic and finance theories mean in the context of the agent wanting to make a decision. The main feature of finance and economic theories is that they try to eliminate the effects of uncertainties by attempting to bring the future to the present. The fundamentals of this statement is deeply rooted in risk and risk management. In behavioural sciences, economics as a discipline has always provided a well-established foundation for understanding uncertainties and what this means for decision making. Finance and economics have done this through different models which attempt to predict the future. On its part, risk management attempts to hedge or mitigate these uncertainties in order for “the planner” to reach the favourable outcome. This book focuses on how AI is to redefine certain important economic and financial theories that are specifically used for the purpose of eliminating uncertainties so as to allow agents to make informed decisions. In effect, certain aspects of finance and economic theories cannot be understood in their entirety without the incorporation of AI.

The Economics of Artificial Intelligence

The Economics of Artificial Intelligence PDF Author: Ajay Agrawal
Publisher: University of Chicago Press
ISBN: 0226833127
Category : Business & Economics
Languages : en
Pages : 172

Get Book Here

Book Description
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.

Detecting Regime Change in Computational Finance

Detecting Regime Change in Computational Finance PDF Author: Jun Chen
Publisher: CRC Press
ISBN: 1000220168
Category : Business & Economics
Languages : en
Pages : 165

Get Book Here

Book Description
Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics: Data science: as an alternative to time series, price movements in a market can be summarised as directional changes Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed Algorithmic trading: regime tracking information can help us to design trading algorithms It will be of great interest to researchers in computational finance, machine learning and data science. About the Authors Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019. Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.

Evolutionary Computation in Economics and Finance

Evolutionary Computation in Economics and Finance PDF Author: Shu-Heng Chen
Publisher: Physica
ISBN: 3790817848
Category : Computers
Languages : en
Pages : 459

Get Book Here

Book Description
After a decade's development, evolutionary computation (EC) proves to be a powerful tool kit for economic analysis. While the demand for this equipment is increasing, there is no volume exclusively written for economists. This volume for the first time helps economists to get a quick grasp on how EC may support their research. A comprehensive coverage of the subject is given, that includes the following three areas: game theory, agent-based economic modelling and financial engineering. Twenty leading scholars from each of these areas contribute a chapter to the volume. The reader will find himself treading the path of the history of this research area, from the fledgling stage to the burgeoning era. The results on games, labour markets, pollution control, institution and productivity, financial markets, trading systems design and derivative pricing, are new and interesting for different target groups. The book also includes informations on web sites, conferences, and computer software.

Innovative Technology at the Interface of Finance and Operations

Innovative Technology at the Interface of Finance and Operations PDF Author: Volodymyr Babich
Publisher: Springer Nature
ISBN: 3030757293
Category : Business & Economics
Languages : en
Pages : 304

Get Book Here

Book Description
This book examines the challenges and opportunities arising from an assortment of technologies as they relate to Operations Management and Finance. The book contains primers on operations, finance, and their interface. After that, each section contains chapters in the categories of theory, applications, case studies, and teaching resources. These technologies and business models include Big Data and Analytics, Artificial Intelligence, Machine Learning, Blockchain, IoT, 3D printing, sharing platforms, crowdfunding, and crowdsourcing. The balance between theory, applications, and teaching materials make this book an interesting read for academics and practitioners in operations and finance who are curious about the role of new technologies. The book is an attractive choice for PhD-level courses and for self-study.

Computational Intelligence in Economics and Finance

Computational Intelligence in Economics and Finance PDF Author: Paul P. Wang
Publisher: Springer Science & Business Media
ISBN: 3662063735
Category : Business & Economics
Languages : en
Pages : 489

Get Book Here

Book Description
Due to the ability to handle specific characteristics of economics and finance forecasting problems like e.g. non-linear relationships, behavioral changes, or knowledge-based domain segmentation, we have recently witnessed a phenomenal growth of the application of computational intelligence methodologies in this field. In this volume, Chen and Wang collected not just works on traditional computational intelligence approaches like fuzzy logic, neural networks, and genetic algorithms, but also examples for more recent technologies like e.g. rough sets, support vector machines, wavelets, or ant algorithms. After an introductory chapter with a structural description of all the methodologies, the subsequent parts describe novel applications of these to typical economics and finance problems like business forecasting, currency crisis discrimination, foreign exchange markets, or stock markets behavior.

Machine Learning for Financial Engineering

Machine Learning for Financial Engineering PDF Author: György Ottucsák
Publisher: World Scientific
ISBN: 1848168136
Category : Business & Economics
Languages : en
Pages : 261

Get Book Here

Book Description
Preface v 1 On the History of the Growth-Optimal Portfolio M.M. Christensen 1 2 Empirical Log-Optimal Portfolio Selections: A Survey L. Györfi Gy. Ottucsáak A. Urbán 81 3 Log-Optimal Portfolio-Selection Strategies with Proportional Transaction Costs L. Györfi H. Walk 119 4 Growth-Optimal Portfoho Selection with Short Selling and Leverage M. Horváth A. Urbán 153 5 Nonparametric Sequential Prediction of Stationary Time Series L. Györfi Gy. Ottucsák 179 6 Empirical Pricing American Put Options L. Györfi A. Telcs 227 Index 249.