Author: Thomas L. Dean
Publisher: Addison-Wesley Professional
ISBN:
Category : Computers
Languages : en
Pages : 604
Book Description
This book provides a detailed understanding of the broad issues in artificial intelligence and a survey of current AI technology. The author delivers broad coverage of innovative representational techniques, including neural networks, image processing and probabilistic reasoning, alongside the traditional methods of symbolic reasoning. The work is intended for students in artificial intelligence, researchers and LISP programmers.
Artificial Intelligence
Author: Thomas L. Dean
Publisher: Addison-Wesley Professional
ISBN:
Category : Computers
Languages : en
Pages : 604
Book Description
This book provides a detailed understanding of the broad issues in artificial intelligence and a survey of current AI technology. The author delivers broad coverage of innovative representational techniques, including neural networks, image processing and probabilistic reasoning, alongside the traditional methods of symbolic reasoning. The work is intended for students in artificial intelligence, researchers and LISP programmers.
Publisher: Addison-Wesley Professional
ISBN:
Category : Computers
Languages : en
Pages : 604
Book Description
This book provides a detailed understanding of the broad issues in artificial intelligence and a survey of current AI technology. The author delivers broad coverage of innovative representational techniques, including neural networks, image processing and probabilistic reasoning, alongside the traditional methods of symbolic reasoning. The work is intended for students in artificial intelligence, researchers and LISP programmers.
Automated Planning
Author: Malik Ghallab
Publisher: Elsevier
ISBN: 1558608567
Category : Business & Economics
Languages : en
Pages : 665
Book Description
Publisher Description
Publisher: Elsevier
ISBN: 1558608567
Category : Business & Economics
Languages : en
Pages : 665
Book Description
Publisher Description
Management, Organisations and Artificial Intelligence
Author: Piotr Buła
Publisher: Routledge Studies in Innovation, Organizations and Technology
ISBN: 9781032025834
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
This book combines academic research with practical guidelines in methods and techniques to supplement existing knowledge relating to organizational management in the era of digital acceleration. It offers a simple layout with concise but rich content presented in an engaging, accessible style and the authors' holistic approach is unique in the field. From a universalist perspective, the book examines and analyzes the development of, among others, Industry 4.0, artificial intelligence (AI), AI 2.0, AI systems and platforms, algorithmics, new paradigms of organization management, business ecosystems, data processing models in AI-based organizations and AI strategies in the global perspective. An additional strength of the book is its relevance and contemporary nature, featuring information, data, forecasts or scenarios reaching up to 2030. How does one build, step by step, an organization that will be based on artificial intelligence technology and gain measurable benefits from it, for instance, as a result of its involvement in the creation of the so-called mesh ecosystem? The answer to this and many other pertinent questions are provided in this book. This timely and important book will appeal to scholars and students across the fields of organizational management and innovation and technology management, as well as managers, educators, scientists, entrepreneurs, innovators and more.
Publisher: Routledge Studies in Innovation, Organizations and Technology
ISBN: 9781032025834
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
This book combines academic research with practical guidelines in methods and techniques to supplement existing knowledge relating to organizational management in the era of digital acceleration. It offers a simple layout with concise but rich content presented in an engaging, accessible style and the authors' holistic approach is unique in the field. From a universalist perspective, the book examines and analyzes the development of, among others, Industry 4.0, artificial intelligence (AI), AI 2.0, AI systems and platforms, algorithmics, new paradigms of organization management, business ecosystems, data processing models in AI-based organizations and AI strategies in the global perspective. An additional strength of the book is its relevance and contemporary nature, featuring information, data, forecasts or scenarios reaching up to 2030. How does one build, step by step, an organization that will be based on artificial intelligence technology and gain measurable benefits from it, for instance, as a result of its involvement in the creation of the so-called mesh ecosystem? The answer to this and many other pertinent questions are provided in this book. This timely and important book will appeal to scholars and students across the fields of organizational management and innovation and technology management, as well as managers, educators, scientists, entrepreneurs, innovators and more.
Communicating Artificial Intelligence (AI)
Author: Seungahn Nah
Publisher: Routledge
ISBN: 1000326306
Category : Language Arts & Disciplines
Languages : en
Pages : 171
Book Description
Despite increasing scholarly attention to artificial intelligence (AI), studies at the intersection of AI and communication remain ripe for exploration, including investigations of the social, political, cultural, and ethical aspects of machine intelligence, interactions among agents, and social artifacts. This book tackles these unexplored research areas with special emphasis on conditions, components, and consequences of cognitive, attitudinal, affective, and behavioural dimensions toward communication and AI. In doing so, this book epitomizes communication, journalism and media scholarship on AI and its social, political, cultural, and ethical perspectives. Topics vary widely from interactions between humans and robots through news representation of AI and AI-based news credibility to privacy and value toward AI in the public sphere. Contributors from such countries as Brazil, Netherland, South Korea, Spain, and United States discuss important issues and challenges in AI and communication studies. The collection of chapters in the book considers implications for not only theoretical and methodological approaches, but policymakers and practitioners alike. The chapters in this book were originally published as a special issue of Communication Studies.
Publisher: Routledge
ISBN: 1000326306
Category : Language Arts & Disciplines
Languages : en
Pages : 171
Book Description
Despite increasing scholarly attention to artificial intelligence (AI), studies at the intersection of AI and communication remain ripe for exploration, including investigations of the social, political, cultural, and ethical aspects of machine intelligence, interactions among agents, and social artifacts. This book tackles these unexplored research areas with special emphasis on conditions, components, and consequences of cognitive, attitudinal, affective, and behavioural dimensions toward communication and AI. In doing so, this book epitomizes communication, journalism and media scholarship on AI and its social, political, cultural, and ethical perspectives. Topics vary widely from interactions between humans and robots through news representation of AI and AI-based news credibility to privacy and value toward AI in the public sphere. Contributors from such countries as Brazil, Netherland, South Korea, Spain, and United States discuss important issues and challenges in AI and communication studies. The collection of chapters in the book considers implications for not only theoretical and methodological approaches, but policymakers and practitioners alike. The chapters in this book were originally published as a special issue of Communication Studies.
Artificial Intelligence in Medical Imaging
Author: Lia Morra
Publisher: CRC Press
ISBN: 1000753085
Category : Science
Languages : en
Pages : 165
Book Description
Choice Recommended Title, January 2021 This book, written by authors with more than a decade of experience in the design and development of artificial intelligence (AI) systems in medical imaging, will guide readers in the understanding of one of the most exciting fields today. After an introductory description of classical machine learning techniques, the fundamentals of deep learning are explained in a simple yet comprehensive manner. The book then proceeds with a historical perspective of how medical AI developed in time, detailing which applications triumphed and which failed, from the era of computer aided detection systems on to the current cutting-edge applications in deep learning today, which are starting to exhibit on-par performance with clinical experts. In the last section, the book offers a view on the complexity of the validation of artificial intelligence applications for commercial use, describing the recently introduced concept of software as a medical device, as well as good practices and relevant considerations for training and testing machine learning systems for medical use. Open problematics on the validation for public use of systems which by nature continuously evolve through new data is also explored. The book will be of interest to graduate students in medical physics, biomedical engineering and computer science, in addition to researchers and medical professionals operating in the medical imaging domain, who wish to better understand these technologies and the future of the field. Features: An accessible yet detailed overview of the field Explores a hot and growing topic Provides an interdisciplinary perspective
Publisher: CRC Press
ISBN: 1000753085
Category : Science
Languages : en
Pages : 165
Book Description
Choice Recommended Title, January 2021 This book, written by authors with more than a decade of experience in the design and development of artificial intelligence (AI) systems in medical imaging, will guide readers in the understanding of one of the most exciting fields today. After an introductory description of classical machine learning techniques, the fundamentals of deep learning are explained in a simple yet comprehensive manner. The book then proceeds with a historical perspective of how medical AI developed in time, detailing which applications triumphed and which failed, from the era of computer aided detection systems on to the current cutting-edge applications in deep learning today, which are starting to exhibit on-par performance with clinical experts. In the last section, the book offers a view on the complexity of the validation of artificial intelligence applications for commercial use, describing the recently introduced concept of software as a medical device, as well as good practices and relevant considerations for training and testing machine learning systems for medical use. Open problematics on the validation for public use of systems which by nature continuously evolve through new data is also explored. The book will be of interest to graduate students in medical physics, biomedical engineering and computer science, in addition to researchers and medical professionals operating in the medical imaging domain, who wish to better understand these technologies and the future of the field. Features: An accessible yet detailed overview of the field Explores a hot and growing topic Provides an interdisciplinary perspective
Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications
Author: Aboul Ella Hassanien
Publisher: Springer Nature
ISBN: 3030519201
Category : Technology & Engineering
Languages : en
Pages : 310
Book Description
This book highlights the latest advances in the field of artificial intelligence and related technologies, with a special focus on sustainable development and environmentally friendly artificial intelligence applications. Discussing theory, applications and research, it covers all aspects of artificial intelligence in the context of sustainable development.
Publisher: Springer Nature
ISBN: 3030519201
Category : Technology & Engineering
Languages : en
Pages : 310
Book Description
This book highlights the latest advances in the field of artificial intelligence and related technologies, with a special focus on sustainable development and environmentally friendly artificial intelligence applications. Discussing theory, applications and research, it covers all aspects of artificial intelligence in the context of sustainable development.
Machine Learning in Finance
Author: Matthew F. Dixon
Publisher: Springer Nature
ISBN: 3030410684
Category : Business & Economics
Languages : en
Pages : 565
Book Description
This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.
Publisher: Springer Nature
ISBN: 3030410684
Category : Business & Economics
Languages : en
Pages : 565
Book Description
This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.
Artificial Intelligence in Theory and Practice
Author: Max Bramer
Publisher: Springer Science & Business Media
ISBN: 0387346546
Category : Computers
Languages : en
Pages : 513
Book Description
The papers in this volume comprise the refereed proceedings of the conference 'Artificial Intelligence in Theory and Practice' (IFIP AI 2006), which formed part of the 19th World Computer Congress of IFIP, the International Federation for Information Processing (WCC- 2006), in Santiago, Chile in August 2006. The conference is organised by the IFIP Technical Committee on Artificial Intelligence (Technical Committee 12) and its Working Group 12.5 (Artificial Intelligence Applications). All papers were reviewed by at least two members of our Programme Committee. The best papers were selected for the conference and are included in this volume. The international nature of IFIP is amply reflected in the large number of countries represented here. The conference featured invited talks by Rose Dieng, John Atkinson, John Debenham and myself. IFIP AI 2006 also included the Second IFIP Symposium on Professional Practice in Artificial Intelligence, organised by Professor John Debenham, which ran alongside the refereed papers. I should like to thank the conference chair. Professor Debenham for all his efforts in organising the Symposium and the members of our programme committee for reviewing an unexpectedly large number of papers to a very tight deadline. This is the latest in a series of conferences organised by IFIP Technical Committee 12 dedicated to the techniques of Artificial Intelligence and their real-world applications. The wide range and importance of these applications is clearly indicated by the papers in this volume. Further information about TCI 2 can be found on our website http://www.ifiptcl2.org.
Publisher: Springer Science & Business Media
ISBN: 0387346546
Category : Computers
Languages : en
Pages : 513
Book Description
The papers in this volume comprise the refereed proceedings of the conference 'Artificial Intelligence in Theory and Practice' (IFIP AI 2006), which formed part of the 19th World Computer Congress of IFIP, the International Federation for Information Processing (WCC- 2006), in Santiago, Chile in August 2006. The conference is organised by the IFIP Technical Committee on Artificial Intelligence (Technical Committee 12) and its Working Group 12.5 (Artificial Intelligence Applications). All papers were reviewed by at least two members of our Programme Committee. The best papers were selected for the conference and are included in this volume. The international nature of IFIP is amply reflected in the large number of countries represented here. The conference featured invited talks by Rose Dieng, John Atkinson, John Debenham and myself. IFIP AI 2006 also included the Second IFIP Symposium on Professional Practice in Artificial Intelligence, organised by Professor John Debenham, which ran alongside the refereed papers. I should like to thank the conference chair. Professor Debenham for all his efforts in organising the Symposium and the members of our programme committee for reviewing an unexpectedly large number of papers to a very tight deadline. This is the latest in a series of conferences organised by IFIP Technical Committee 12 dedicated to the techniques of Artificial Intelligence and their real-world applications. The wide range and importance of these applications is clearly indicated by the papers in this volume. Further information about TCI 2 can be found on our website http://www.ifiptcl2.org.
Artificial Intelligence in Theory and Practice III
Author: Max Bramer
Publisher: Springer Science & Business Media
ISBN: 3642152856
Category : Computers
Languages : en
Pages : 253
Book Description
The papers in this volume comprise the refereed proceedings of the conference Arti- cial Intelligence in Theory and Practice (IFIP AI 2010), which formed part of the 21st World Computer Congress of IFIP, the International Federation for Information Pr- essing (WCC-2010), in Brisbane, Australia in September 2010. The conference was organized by the IFIP Technical Committee on Artificial Int- ligence (Technical Committee 12) and its Working Group 12.5 (Artificial Intelligence Applications). All papers were reviewed by at least two members of our Program Committee. - nal decisions were made by the Executive Program Committee, which comprised John Debenham (University of Technology, Sydney, Australia), Ilias Maglogiannis (University of Central Greece, Lamia, Greece), Eunika Mercier-Laurent (KIM, France) and myself. The best papers were selected for the conference, either as long papers (maximum 10 pages) or as short papers (maximum 5 pages) and are included in this volume. The international nature of IFIP is amply reflected in the large number of countries represented here. I should like to thank the Conference Chair, Tharam Dillon, for all his efforts and the members of our Program Committee for reviewing papers under a very tight de- line.
Publisher: Springer Science & Business Media
ISBN: 3642152856
Category : Computers
Languages : en
Pages : 253
Book Description
The papers in this volume comprise the refereed proceedings of the conference Arti- cial Intelligence in Theory and Practice (IFIP AI 2010), which formed part of the 21st World Computer Congress of IFIP, the International Federation for Information Pr- essing (WCC-2010), in Brisbane, Australia in September 2010. The conference was organized by the IFIP Technical Committee on Artificial Int- ligence (Technical Committee 12) and its Working Group 12.5 (Artificial Intelligence Applications). All papers were reviewed by at least two members of our Program Committee. - nal decisions were made by the Executive Program Committee, which comprised John Debenham (University of Technology, Sydney, Australia), Ilias Maglogiannis (University of Central Greece, Lamia, Greece), Eunika Mercier-Laurent (KIM, France) and myself. The best papers were selected for the conference, either as long papers (maximum 10 pages) or as short papers (maximum 5 pages) and are included in this volume. The international nature of IFIP is amply reflected in the large number of countries represented here. I should like to thank the Conference Chair, Tharam Dillon, for all his efforts and the members of our Program Committee for reviewing papers under a very tight de- line.
Theory and Practice of Business Intelligence in Healthcare
Author: Khuntia, Jiban
Publisher: IGI Global
ISBN: 1799823113
Category : Medical
Languages : en
Pages : 322
Book Description
Business intelligence supports managers in enterprises to make informed business decisions in various levels and domains such as in healthcare. These technologies can handle large structured and unstructured data (big data) in the healthcare industry. Because of the complex nature of healthcare data and the significant impact of healthcare data analysis, it is important to understand both the theories and practices of business intelligence in healthcare. Theory and Practice of Business Intelligence in Healthcare is a collection of innovative research that introduces data mining, modeling, and analytic techniques to health and healthcare data; articulates the value of big volumes of data to health and healthcare; evaluates business intelligence tools; and explores business intelligence use and applications in healthcare. While highlighting topics including digital health, operations intelligence, and patient empowerment, this book is ideally designed for healthcare professionals, IT consultants, hospital directors, data management staff, data analysts, hospital administrators, executives, managers, academicians, students, and researchers seeking current research on the digitization of health records and health systems integration.
Publisher: IGI Global
ISBN: 1799823113
Category : Medical
Languages : en
Pages : 322
Book Description
Business intelligence supports managers in enterprises to make informed business decisions in various levels and domains such as in healthcare. These technologies can handle large structured and unstructured data (big data) in the healthcare industry. Because of the complex nature of healthcare data and the significant impact of healthcare data analysis, it is important to understand both the theories and practices of business intelligence in healthcare. Theory and Practice of Business Intelligence in Healthcare is a collection of innovative research that introduces data mining, modeling, and analytic techniques to health and healthcare data; articulates the value of big volumes of data to health and healthcare; evaluates business intelligence tools; and explores business intelligence use and applications in healthcare. While highlighting topics including digital health, operations intelligence, and patient empowerment, this book is ideally designed for healthcare professionals, IT consultants, hospital directors, data management staff, data analysts, hospital administrators, executives, managers, academicians, students, and researchers seeking current research on the digitization of health records and health systems integration.