Author: Chris Aldrich
Publisher: Springer Science & Business Media
ISBN: 1447151852
Category : Computers
Languages : en
Pages : 388
Book Description
This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods; examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning; describes the use of spectral methods in process fault diagnosis.
Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods
Fault Diagnosis
Author: Józef Korbicz
Publisher: Springer Science & Business Media
ISBN: 3642186157
Category : Computers
Languages : en
Pages : 936
Book Description
This comprehensive work presents the status and likely development of fault diagnosis, an emerging discipline of modern control engineering. It covers fundamentals of model-based fault diagnosis in a wide context, providing a good introduction to the theoretical foundation and many basic approaches of fault detection.
Publisher: Springer Science & Business Media
ISBN: 3642186157
Category : Computers
Languages : en
Pages : 936
Book Description
This comprehensive work presents the status and likely development of fault diagnosis, an emerging discipline of modern control engineering. It covers fundamentals of model-based fault diagnosis in a wide context, providing a good introduction to the theoretical foundation and many basic approaches of fault detection.
Artificial Intelligence in Process Fault Diagnosis
Author: Richard J. Fickelscherer
Publisher: John Wiley & Sons
ISBN: 1119825911
Category : Science
Languages : en
Pages : 436
Book Description
Artificial Intelligence in Process Fault Diagnosis A comprehensive guide to the future of process fault diagnosis Automation has revolutionized every aspect of industrial production, from the accumulation of raw materials to quality control inspections. Even process analysis itself has become subject to automated efficiencies, in the form of process fault analyzers, i.e., computer programs capable of analyzing process plant operations to identify faults, improve safety, and enhance productivity. Prohibitive cost and challenges of application have prevented widespread industry adoption of this technology, but recent advances in artificial intelligence promise to place these programs at the center of manufacturing process analysis. Artificial Intelligence in Process Fault Diagnosis brings together insights from data science and machine learning to deliver an effective introduction to these advances and their potential applications. Balancing theory and practice, it walks readers through the process of choosing an ideal diagnostic methodology and the creation of intelligent computer programs. The result promises to place readers at the forefront of this revolution in manufacturing. Artificial Intelligence in Process Fault Diagnosis readers will also find: Coverage of various AI-based diagnostic methodologies elaborated by leading experts Guidance for creating programs that can prevent catastrophic operating disasters, reduce downtime after emergency process shutdowns, and more Comprehensive overview of optimized best practices Artificial Intelligence in Process Fault Diagnosis is ideal for process control engineers, operating engineers working with processing industrial plants, and plant managers and operators throughout the various process industries.
Publisher: John Wiley & Sons
ISBN: 1119825911
Category : Science
Languages : en
Pages : 436
Book Description
Artificial Intelligence in Process Fault Diagnosis A comprehensive guide to the future of process fault diagnosis Automation has revolutionized every aspect of industrial production, from the accumulation of raw materials to quality control inspections. Even process analysis itself has become subject to automated efficiencies, in the form of process fault analyzers, i.e., computer programs capable of analyzing process plant operations to identify faults, improve safety, and enhance productivity. Prohibitive cost and challenges of application have prevented widespread industry adoption of this technology, but recent advances in artificial intelligence promise to place these programs at the center of manufacturing process analysis. Artificial Intelligence in Process Fault Diagnosis brings together insights from data science and machine learning to deliver an effective introduction to these advances and their potential applications. Balancing theory and practice, it walks readers through the process of choosing an ideal diagnostic methodology and the creation of intelligent computer programs. The result promises to place readers at the forefront of this revolution in manufacturing. Artificial Intelligence in Process Fault Diagnosis readers will also find: Coverage of various AI-based diagnostic methodologies elaborated by leading experts Guidance for creating programs that can prevent catastrophic operating disasters, reduce downtime after emergency process shutdowns, and more Comprehensive overview of optimized best practices Artificial Intelligence in Process Fault Diagnosis is ideal for process control engineers, operating engineers working with processing industrial plants, and plant managers and operators throughout the various process industries.
Artificial Intelligence
Author: Marco Antonio Aceves-Fernandez
Publisher: BoD – Books on Demand
ISBN: 178923364X
Category : Computers
Languages : en
Pages : 466
Book Description
Artificial intelligence (AI) is taking an increasingly important role in our society. From cars, smartphones, airplanes, consumer applications, and even medical equipment, the impact of AI is changing the world around us. The ability of machines to demonstrate advanced cognitive skills in taking decisions, learn and perceive the environment, predict certain behavior, and process written or spoken languages, among other skills, makes this discipline of paramount importance in today's world. Although AI is changing the world for the better in many applications, it also comes with its challenges. This book encompasses many applications as well as new techniques, challenges, and opportunities in this fascinating area.
Publisher: BoD – Books on Demand
ISBN: 178923364X
Category : Computers
Languages : en
Pages : 466
Book Description
Artificial intelligence (AI) is taking an increasingly important role in our society. From cars, smartphones, airplanes, consumer applications, and even medical equipment, the impact of AI is changing the world around us. The ability of machines to demonstrate advanced cognitive skills in taking decisions, learn and perceive the environment, predict certain behavior, and process written or spoken languages, among other skills, makes this discipline of paramount importance in today's world. Although AI is changing the world for the better in many applications, it also comes with its challenges. This book encompasses many applications as well as new techniques, challenges, and opportunities in this fascinating area.
Applications of Artificial Intelligence in Process Systems Engineering
Author: Jingzheng Ren
Publisher: Elsevier
ISBN: 012821743X
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering
Publisher: Elsevier
ISBN: 012821743X
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering
Computational Intelligence in Fault Diagnosis
Author: Vasile Palade
Publisher: Springer Science & Business Media
ISBN: 184628631X
Category : Computers
Languages : en
Pages : 374
Book Description
This book presents the most recent concerns and research results in industrial fault diagnosis using intelligent techniques. It focuses on computational intelligence applications to fault diagnosis with real-world applications used in different chapters to validate the different diagnosis methods. The book includes one chapter dealing with a novel coherent fault diagnosis distributed methodology for complex systems.
Publisher: Springer Science & Business Media
ISBN: 184628631X
Category : Computers
Languages : en
Pages : 374
Book Description
This book presents the most recent concerns and research results in industrial fault diagnosis using intelligent techniques. It focuses on computational intelligence applications to fault diagnosis with real-world applications used in different chapters to validate the different diagnosis methods. The book includes one chapter dealing with a novel coherent fault diagnosis distributed methodology for complex systems.
Data-Driven Fault Detection and Reasoning for Industrial Monitoring
Author: Jing Wang
Publisher: Springer Nature
ISBN: 9811680442
Category : Technology & Engineering
Languages : en
Pages : 277
Book Description
This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications. This is an open access book.
Publisher: Springer Nature
ISBN: 9811680442
Category : Technology & Engineering
Languages : en
Pages : 277
Book Description
This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications. This is an open access book.
Artificial Intelligence in Process Engineering
Author: Michael Mavrovouniotis
Publisher: Elsevier
ISBN: 0323153143
Category : Technology & Engineering
Languages : en
Pages : 383
Book Description
Artificial Intelligence in Process Engineering aims to present a diverse sample of Artificial Intelligence (AI) applications in process engineering. The book contains contributions, selected by the editors based on educational value and diversity of AI methods and process engineering application domains. Topics discussed in the text include the use of qualitative reasoning for modeling and simulation of chemical systems; the use of qualitative models in discrete event simulation to analyze malfunctions in processing systems; and the diagnosis of faults in processes that are controlled by Programmable Logic Controllers. There are also debates on the issue of quantitative versus qualitative information. The control of batch processes, a design of a system that synthesizes bioseparation processes, and process design in the domain of chemical (rather than biochemical) systems are likewise covered in the text. This publication will be of value to industrial engineers and process engineers and researchers.
Publisher: Elsevier
ISBN: 0323153143
Category : Technology & Engineering
Languages : en
Pages : 383
Book Description
Artificial Intelligence in Process Engineering aims to present a diverse sample of Artificial Intelligence (AI) applications in process engineering. The book contains contributions, selected by the editors based on educational value and diversity of AI methods and process engineering application domains. Topics discussed in the text include the use of qualitative reasoning for modeling and simulation of chemical systems; the use of qualitative models in discrete event simulation to analyze malfunctions in processing systems; and the diagnosis of faults in processes that are controlled by Programmable Logic Controllers. There are also debates on the issue of quantitative versus qualitative information. The control of batch processes, a design of a system that synthesizes bioseparation processes, and process design in the domain of chemical (rather than biochemical) systems are likewise covered in the text. This publication will be of value to industrial engineers and process engineers and researchers.
Power System Fault Diagnosis
Author: Md Shafiullah
Publisher: Elsevier
ISBN: 032388430X
Category : Technology & Engineering
Languages : en
Pages : 430
Book Description
Power System Fault Diagnosis: A Wide Area Measurement Based Intelligent Approach is a comprehensive overview of the growing interests in efficient diagnosis of power system faults to reduce outage duration and revenue losses by expediting the restoration process.This book illustrates intelligent fault diagnosis schemes for power system networks, at both transmission and distribution levels, using data acquired from phasor measurement units. It presents the power grid modeling, fault modeling, feature extraction processes, and various fault diagnosis techniques, including artificial intelligence techniques, in steps. The book also incorporates uncertainty associated with line parameters, fault information (resistance and inception angle), load demand, renewable energy generation, and measurement noises. - Provides step-by-step modeling of power system networks (distribution and transmission) and faults in MATLAB/SIMULINK and real-time digital simulator (RTDS) platforms - Presents feature extraction processes using advanced signal processing techniques (discrete wavelet and Stockwell transforms) and an easy-to-understand optimal feature selection method - Illustrates comprehensive results in the graphical and tabular formats that can be easily reproduced by beginners - Highlights various utility practices for fault location in transmission networks, distribution systems, and underground cables.
Publisher: Elsevier
ISBN: 032388430X
Category : Technology & Engineering
Languages : en
Pages : 430
Book Description
Power System Fault Diagnosis: A Wide Area Measurement Based Intelligent Approach is a comprehensive overview of the growing interests in efficient diagnosis of power system faults to reduce outage duration and revenue losses by expediting the restoration process.This book illustrates intelligent fault diagnosis schemes for power system networks, at both transmission and distribution levels, using data acquired from phasor measurement units. It presents the power grid modeling, fault modeling, feature extraction processes, and various fault diagnosis techniques, including artificial intelligence techniques, in steps. The book also incorporates uncertainty associated with line parameters, fault information (resistance and inception angle), load demand, renewable energy generation, and measurement noises. - Provides step-by-step modeling of power system networks (distribution and transmission) and faults in MATLAB/SIMULINK and real-time digital simulator (RTDS) platforms - Presents feature extraction processes using advanced signal processing techniques (discrete wavelet and Stockwell transforms) and an easy-to-understand optimal feature selection method - Illustrates comprehensive results in the graphical and tabular formats that can be easily reproduced by beginners - Highlights various utility practices for fault location in transmission networks, distribution systems, and underground cables.
Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery
Author: Yaguo Lei
Publisher: Butterworth-Heinemann
ISBN: 0128115351
Category : Technology & Engineering
Languages : en
Pages : 378
Book Description
Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery provides a comprehensive introduction of intelligent fault diagnosis and RUL prediction based on the current achievements of the author's research group. The main contents include multi-domain signal processing and feature extraction, intelligent diagnosis models, clustering algorithms, hybrid intelligent diagnosis strategies, and RUL prediction approaches, etc. This book presents fundamental theories and advanced methods of identifying the occurrence, locations, and degrees of faults, and also includes information on how to predict the RUL of rotating machinery. Besides experimental demonstrations, many application cases are presented and illustrated to test the methods mentioned in the book. This valuable reference provides an essential guide on machinery fault diagnosis that helps readers understand basic concepts and fundamental theories. Academic researchers with mechanical engineering or computer science backgrounds, and engineers or practitioners who are in charge of machine safety, operation, and maintenance will find this book very useful. - Provides a detailed background and roadmap of intelligent diagnosis and RUL prediction of rotating machinery, involving fault mechanisms, vibration characteristics, health indicators, and diagnosis and prognostics - Presents basic theories, advanced methods, and the latest contributions in the field of intelligent fault diagnosis and RUL prediction - Includes numerous application cases, and the methods, algorithms, and models introduced in the book are demonstrated by industrial experiences
Publisher: Butterworth-Heinemann
ISBN: 0128115351
Category : Technology & Engineering
Languages : en
Pages : 378
Book Description
Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery provides a comprehensive introduction of intelligent fault diagnosis and RUL prediction based on the current achievements of the author's research group. The main contents include multi-domain signal processing and feature extraction, intelligent diagnosis models, clustering algorithms, hybrid intelligent diagnosis strategies, and RUL prediction approaches, etc. This book presents fundamental theories and advanced methods of identifying the occurrence, locations, and degrees of faults, and also includes information on how to predict the RUL of rotating machinery. Besides experimental demonstrations, many application cases are presented and illustrated to test the methods mentioned in the book. This valuable reference provides an essential guide on machinery fault diagnosis that helps readers understand basic concepts and fundamental theories. Academic researchers with mechanical engineering or computer science backgrounds, and engineers or practitioners who are in charge of machine safety, operation, and maintenance will find this book very useful. - Provides a detailed background and roadmap of intelligent diagnosis and RUL prediction of rotating machinery, involving fault mechanisms, vibration characteristics, health indicators, and diagnosis and prognostics - Presents basic theories, advanced methods, and the latest contributions in the field of intelligent fault diagnosis and RUL prediction - Includes numerous application cases, and the methods, algorithms, and models introduced in the book are demonstrated by industrial experiences