Author: Thomas E. Quantrille
Publisher: Elsevier
ISBN: 0080571212
Category : Technology & Engineering
Languages : en
Pages : 634
Book Description
Artificial intelligence (AI) is the part of computer science concerned with designing intelligent computer systems (systems that exhibit characteristics we associate with intelligence in human behavior). This book is the first published textbook of AI in chemical engineering, and provides broad and in-depth coverage of AI programming, AI principles, expert systems, and neural networks in chemical engineering. This book introduces the computational means and methodologies that are used to enable computers to perform intelligent engineering tasks. A key goal is to move beyond the principles of AI into its applications in chemical engineering. After reading this book, a chemical engineer will have a firm grounding in AI, know what chemical engineering applications of AI exist today, and understand the current challenges facing AI in engineering. - Allows the reader to learn AI quickly using inexpensive personal computers - Contains a large number of illustrative examples, simple exercises, and complex practice problems and solutions - Includes a computer diskette for an illustrated case study - Demonstrates an expert system for separation synthesis (EXSEP) - Presents a detailed review of published literature on expert systems and neural networks in chemical engineering
Artificial Intelligence in Chemical Engineering
Author: Thomas E. Quantrille
Publisher: Elsevier
ISBN: 0080571212
Category : Technology & Engineering
Languages : en
Pages : 634
Book Description
Artificial intelligence (AI) is the part of computer science concerned with designing intelligent computer systems (systems that exhibit characteristics we associate with intelligence in human behavior). This book is the first published textbook of AI in chemical engineering, and provides broad and in-depth coverage of AI programming, AI principles, expert systems, and neural networks in chemical engineering. This book introduces the computational means and methodologies that are used to enable computers to perform intelligent engineering tasks. A key goal is to move beyond the principles of AI into its applications in chemical engineering. After reading this book, a chemical engineer will have a firm grounding in AI, know what chemical engineering applications of AI exist today, and understand the current challenges facing AI in engineering. - Allows the reader to learn AI quickly using inexpensive personal computers - Contains a large number of illustrative examples, simple exercises, and complex practice problems and solutions - Includes a computer diskette for an illustrated case study - Demonstrates an expert system for separation synthesis (EXSEP) - Presents a detailed review of published literature on expert systems and neural networks in chemical engineering
Publisher: Elsevier
ISBN: 0080571212
Category : Technology & Engineering
Languages : en
Pages : 634
Book Description
Artificial intelligence (AI) is the part of computer science concerned with designing intelligent computer systems (systems that exhibit characteristics we associate with intelligence in human behavior). This book is the first published textbook of AI in chemical engineering, and provides broad and in-depth coverage of AI programming, AI principles, expert systems, and neural networks in chemical engineering. This book introduces the computational means and methodologies that are used to enable computers to perform intelligent engineering tasks. A key goal is to move beyond the principles of AI into its applications in chemical engineering. After reading this book, a chemical engineer will have a firm grounding in AI, know what chemical engineering applications of AI exist today, and understand the current challenges facing AI in engineering. - Allows the reader to learn AI quickly using inexpensive personal computers - Contains a large number of illustrative examples, simple exercises, and complex practice problems and solutions - Includes a computer diskette for an illustrated case study - Demonstrates an expert system for separation synthesis (EXSEP) - Presents a detailed review of published literature on expert systems and neural networks in chemical engineering
Applications of Artificial Intelligence in Process Systems Engineering
Author: Jingzheng Ren
Publisher: Elsevier
ISBN: 012821743X
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering
Publisher: Elsevier
ISBN: 012821743X
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering
Artificial Intelligence in Process Engineering
Author: Michael Mavrovouniotis
Publisher: Elsevier
ISBN: 0323153143
Category : Technology & Engineering
Languages : en
Pages : 383
Book Description
Artificial Intelligence in Process Engineering aims to present a diverse sample of Artificial Intelligence (AI) applications in process engineering. The book contains contributions, selected by the editors based on educational value and diversity of AI methods and process engineering application domains. Topics discussed in the text include the use of qualitative reasoning for modeling and simulation of chemical systems; the use of qualitative models in discrete event simulation to analyze malfunctions in processing systems; and the diagnosis of faults in processes that are controlled by Programmable Logic Controllers. There are also debates on the issue of quantitative versus qualitative information. The control of batch processes, a design of a system that synthesizes bioseparation processes, and process design in the domain of chemical (rather than biochemical) systems are likewise covered in the text. This publication will be of value to industrial engineers and process engineers and researchers.
Publisher: Elsevier
ISBN: 0323153143
Category : Technology & Engineering
Languages : en
Pages : 383
Book Description
Artificial Intelligence in Process Engineering aims to present a diverse sample of Artificial Intelligence (AI) applications in process engineering. The book contains contributions, selected by the editors based on educational value and diversity of AI methods and process engineering application domains. Topics discussed in the text include the use of qualitative reasoning for modeling and simulation of chemical systems; the use of qualitative models in discrete event simulation to analyze malfunctions in processing systems; and the diagnosis of faults in processes that are controlled by Programmable Logic Controllers. There are also debates on the issue of quantitative versus qualitative information. The control of batch processes, a design of a system that synthesizes bioseparation processes, and process design in the domain of chemical (rather than biochemical) systems are likewise covered in the text. This publication will be of value to industrial engineers and process engineers and researchers.
Machine Learning in Chemistry
Author: Jon Paul Janet
Publisher: American Chemical Society
ISBN: 0841299005
Category : Science
Languages : en
Pages : 197
Book Description
Recent advances in machine learning or artificial intelligence for vision and natural language processing that have enabled the development of new technologies such as personal assistants or self-driving cars have brought machine learning and artificial intelligence to the forefront of popular culture. The accumulation of these algorithmic advances along with the increasing availability of large data sets and readily available high performance computing has played an important role in bringing machine learning applications to such a wide range of disciplines. Given the emphasis in the chemical sciences on the relationship between structure and function, whether in biochemistry or in materials chemistry, adoption of machine learning by chemistsderivations where they are important
Publisher: American Chemical Society
ISBN: 0841299005
Category : Science
Languages : en
Pages : 197
Book Description
Recent advances in machine learning or artificial intelligence for vision and natural language processing that have enabled the development of new technologies such as personal assistants or self-driving cars have brought machine learning and artificial intelligence to the forefront of popular culture. The accumulation of these algorithmic advances along with the increasing availability of large data sets and readily available high performance computing has played an important role in bringing machine learning applications to such a wide range of disciplines. Given the emphasis in the chemical sciences on the relationship between structure and function, whether in biochemistry or in materials chemistry, adoption of machine learning by chemistsderivations where they are important
Machine Learning in Chemistry
Author: Hugh M. Cartwright
Publisher: Royal Society of Chemistry
ISBN: 1788017897
Category : Science
Languages : en
Pages : 564
Book Description
Progress in the application of machine learning (ML) to the physical and life sciences has been rapid. A decade ago, the method was mainly of interest to those in computer science departments, but more recently ML tools have been developed that show significant potential across wide areas of science. There is a growing consensus that ML software, and related areas of artificial intelligence, may, in due course, become as fundamental to scientific research as computers themselves. Yet a perception remains that ML is obscure or esoteric, that only computer scientists can really understand it, and that few meaningful applications in scientific research exist. This book challenges that view. With contributions from leading research groups, it presents in-depth examples to illustrate how ML can be applied to real chemical problems. Through these examples, the reader can both gain a feel for what ML can and cannot (so far) achieve, and also identify characteristics that might make a problem in physical science amenable to a ML approach. This text is a valuable resource for scientists who are intrigued by the power of machine learning and want to learn more about how it can be applied in their own field.
Publisher: Royal Society of Chemistry
ISBN: 1788017897
Category : Science
Languages : en
Pages : 564
Book Description
Progress in the application of machine learning (ML) to the physical and life sciences has been rapid. A decade ago, the method was mainly of interest to those in computer science departments, but more recently ML tools have been developed that show significant potential across wide areas of science. There is a growing consensus that ML software, and related areas of artificial intelligence, may, in due course, become as fundamental to scientific research as computers themselves. Yet a perception remains that ML is obscure or esoteric, that only computer scientists can really understand it, and that few meaningful applications in scientific research exist. This book challenges that view. With contributions from leading research groups, it presents in-depth examples to illustrate how ML can be applied to real chemical problems. Through these examples, the reader can both gain a feel for what ML can and cannot (so far) achieve, and also identify characteristics that might make a problem in physical science amenable to a ML approach. This text is a valuable resource for scientists who are intrigued by the power of machine learning and want to learn more about how it can be applied in their own field.
Handbook of Research on Determining the Reliability of Online Assessment and Distance Learning
Author: Moura, Ana S.
Publisher: IGI Global
ISBN: 1799847705
Category : Education
Languages : en
Pages : 548
Book Description
Though in the past online learning was considered of poorer professional quality than classroom learning, it has become a useful and, in some cases, vital tool for promoting the inclusivity of education. Some of its benefits include allowing greater accessibility to educational resources previously unattainable by those in rural areas, and in current times, it has proven to be a critical asset as universities shut down due to natural disasters and pandemics. Examining the current state of distance learning and determining online assessment tools and processes that can enhance the online learning experience are clearly crucial for the advancement of modern education. The Handbook of Research on Determining the Reliability of Online Assessment and Distance Learning is a collection of pioneering investigations on the methods and applications of digital technologies in the realm of education. It provides a clear and extensive analysis of issues regarding online learning while also offering frameworks to solve these addressed problems. Moreover, the book reviews and evaluates the present and intended future of distance learning, focusing on the societal and employer perspective versus the academic proposals. While highlighting topics including hybrid teaching, blended learning, and telelearning, this book is ideally designed for teachers, academicians, researchers, educational administrators, and students.
Publisher: IGI Global
ISBN: 1799847705
Category : Education
Languages : en
Pages : 548
Book Description
Though in the past online learning was considered of poorer professional quality than classroom learning, it has become a useful and, in some cases, vital tool for promoting the inclusivity of education. Some of its benefits include allowing greater accessibility to educational resources previously unattainable by those in rural areas, and in current times, it has proven to be a critical asset as universities shut down due to natural disasters and pandemics. Examining the current state of distance learning and determining online assessment tools and processes that can enhance the online learning experience are clearly crucial for the advancement of modern education. The Handbook of Research on Determining the Reliability of Online Assessment and Distance Learning is a collection of pioneering investigations on the methods and applications of digital technologies in the realm of education. It provides a clear and extensive analysis of issues regarding online learning while also offering frameworks to solve these addressed problems. Moreover, the book reviews and evaluates the present and intended future of distance learning, focusing on the societal and employer perspective versus the academic proposals. While highlighting topics including hybrid teaching, blended learning, and telelearning, this book is ideally designed for teachers, academicians, researchers, educational administrators, and students.
Artificial Intelligence in Mechanical and Industrial Engineering
Author: Kaushik Kumar
Publisher: CRC Press
ISBN: 1000396932
Category : Computers
Languages : en
Pages : 157
Book Description
Artificial Intelligence in Mechanical and Industrial Engineering offers a unified platform for the dissemination of basic and applied knowledge on the integration of artificial intelligence within the realm of mechanical and industrial engineering. The book covers the tools and information needed to build successful careers and a source of knowledge for those working with AI within these domains. The book offers a systematic approach to explicate fundamentals as well as recent advances. It incorporates various case studies for major topics as well as numerous examples. It will also include real-time intelligent automation and associated supporting methodologies and techniques, and cover decision-support systems, as well as applications of Chaos Theory and Fractals. The book will give scientists, researchers, instructors, students, and practitioners the tools and information needed to build successful careers and to be an impetus to advancements in next-generation mechanical and industrial engineering domains.
Publisher: CRC Press
ISBN: 1000396932
Category : Computers
Languages : en
Pages : 157
Book Description
Artificial Intelligence in Mechanical and Industrial Engineering offers a unified platform for the dissemination of basic and applied knowledge on the integration of artificial intelligence within the realm of mechanical and industrial engineering. The book covers the tools and information needed to build successful careers and a source of knowledge for those working with AI within these domains. The book offers a systematic approach to explicate fundamentals as well as recent advances. It incorporates various case studies for major topics as well as numerous examples. It will also include real-time intelligent automation and associated supporting methodologies and techniques, and cover decision-support systems, as well as applications of Chaos Theory and Fractals. The book will give scientists, researchers, instructors, students, and practitioners the tools and information needed to build successful careers and to be an impetus to advancements in next-generation mechanical and industrial engineering domains.
Applications of Machine Learning
Author: Prashant Johri
Publisher: Springer Nature
ISBN: 9811533571
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.
Publisher: Springer Nature
ISBN: 9811533571
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.
Introduction to Chemical Engineering Computing
Author: Bruce A. Finlayson
Publisher: John Wiley & Sons
ISBN: 1118309588
Category : Technology & Engineering
Languages : en
Pages : 415
Book Description
Step-by-step instructions enable chemical engineers to master key software programs and solve complex problems Today, both students and professionals in chemical engineering must solve increasingly complex problems dealing with refineries, fuel cells, microreactors, and pharmaceutical plants, to name a few. With this book as their guide, readers learn to solve these problems using their computers and Excel®, MATLAB, Aspen Plus, and COMSOL Multiphysics. Moreover, they learn how to check their solutions and validate their results to make sure they have solved the problems correctly. Now in its Second Edition, Introduction to Chemical Engineering Computing is based on the author's firsthand teaching experience. As a result, the emphasis is on problem solving. Simple introductions help readers become conversant with each program and then tackle a broad range of problems in chemical engineering, including: Equations of state Chemical reaction equilibria Mass balances with recycle streams Thermodynamics and simulation of mass transfer equipment Process simulation Fluid flow in two and three dimensions All the chapters contain clear instructions, figures, and examples to guide readers through all the programs and types of chemical engineering problems. Problems at the end of each chapter, ranging from simple to difficult, allow readers to gradually build their skills, whether they solve the problems themselves or in teams. In addition, the book's accompanying website lists the core principles learned from each problem, both from a chemical engineering and a computational perspective. Covering a broad range of disciplines and problems within chemical engineering, Introduction to Chemical Engineering Computing is recommended for both undergraduate and graduate students as well as practicing engineers who want to know how to choose the right computer software program and tackle almost any chemical engineering problem.
Publisher: John Wiley & Sons
ISBN: 1118309588
Category : Technology & Engineering
Languages : en
Pages : 415
Book Description
Step-by-step instructions enable chemical engineers to master key software programs and solve complex problems Today, both students and professionals in chemical engineering must solve increasingly complex problems dealing with refineries, fuel cells, microreactors, and pharmaceutical plants, to name a few. With this book as their guide, readers learn to solve these problems using their computers and Excel®, MATLAB, Aspen Plus, and COMSOL Multiphysics. Moreover, they learn how to check their solutions and validate their results to make sure they have solved the problems correctly. Now in its Second Edition, Introduction to Chemical Engineering Computing is based on the author's firsthand teaching experience. As a result, the emphasis is on problem solving. Simple introductions help readers become conversant with each program and then tackle a broad range of problems in chemical engineering, including: Equations of state Chemical reaction equilibria Mass balances with recycle streams Thermodynamics and simulation of mass transfer equipment Process simulation Fluid flow in two and three dimensions All the chapters contain clear instructions, figures, and examples to guide readers through all the programs and types of chemical engineering problems. Problems at the end of each chapter, ranging from simple to difficult, allow readers to gradually build their skills, whether they solve the problems themselves or in teams. In addition, the book's accompanying website lists the core principles learned from each problem, both from a chemical engineering and a computational perspective. Covering a broad range of disciplines and problems within chemical engineering, Introduction to Chemical Engineering Computing is recommended for both undergraduate and graduate students as well as practicing engineers who want to know how to choose the right computer software program and tackle almost any chemical engineering problem.
Artificial Intelligence in Drug Discovery
Author: Nathan Brown
Publisher: Royal Society of Chemistry
ISBN: 1839160543
Category : Computers
Languages : en
Pages : 425
Book Description
Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.
Publisher: Royal Society of Chemistry
ISBN: 1839160543
Category : Computers
Languages : en
Pages : 425
Book Description
Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.