Author: Alberto Pais
Publisher: Elsevier
ISBN: 0323972519
Category : Medical
Languages : en
Pages : 300
Book Description
Artificial Intelligence for Drug Product Lifecycle Applications explains the use of artificial intelligence (AI) in drug discovery and development paths, including the clinical and postapproval phases. This book gives methods for each of the drug development steps, from the fundamentals to postapproval drug product. AI is a synergistic assembly of enhanced optimization strategies with particular applications in pharmaceutical development and advanced tools for promoting cost-effectiveness throughout the drug lifecycle. Specifically, AI brings together the potential to improve drug approval rates, reduce development costs, get medications to patients faster, and help patients comply with their treatments.Accelerated pharmaceutical development and drug product approval rates will enable larger profits from patent-protected market exclusivity. This book offers the tools and knowledge to create the right AI strategy to extend the landscape of AI applications across the drug lifecycle. It is especially useful for pharmaceutical scientists, health care professionals, and regulatory scientists, as well as advanced students and postgraduates actively involved in pharmaceutical product and process development involving the use of artificial intelligence in drug delivery applications. - Classifies AI methodologies and application examples into different categories representing the various steps of the drug development cycle - Combines timely literature review with clear artworks to improve understanding - Examines deep learning and machine learning in drug discovery
Artificial Intelligence for Drug Product Lifecycle Applications
Author: Alberto Pais
Publisher: Elsevier
ISBN: 0323972519
Category : Medical
Languages : en
Pages : 300
Book Description
Artificial Intelligence for Drug Product Lifecycle Applications explains the use of artificial intelligence (AI) in drug discovery and development paths, including the clinical and postapproval phases. This book gives methods for each of the drug development steps, from the fundamentals to postapproval drug product. AI is a synergistic assembly of enhanced optimization strategies with particular applications in pharmaceutical development and advanced tools for promoting cost-effectiveness throughout the drug lifecycle. Specifically, AI brings together the potential to improve drug approval rates, reduce development costs, get medications to patients faster, and help patients comply with their treatments.Accelerated pharmaceutical development and drug product approval rates will enable larger profits from patent-protected market exclusivity. This book offers the tools and knowledge to create the right AI strategy to extend the landscape of AI applications across the drug lifecycle. It is especially useful for pharmaceutical scientists, health care professionals, and regulatory scientists, as well as advanced students and postgraduates actively involved in pharmaceutical product and process development involving the use of artificial intelligence in drug delivery applications. - Classifies AI methodologies and application examples into different categories representing the various steps of the drug development cycle - Combines timely literature review with clear artworks to improve understanding - Examines deep learning and machine learning in drug discovery
Publisher: Elsevier
ISBN: 0323972519
Category : Medical
Languages : en
Pages : 300
Book Description
Artificial Intelligence for Drug Product Lifecycle Applications explains the use of artificial intelligence (AI) in drug discovery and development paths, including the clinical and postapproval phases. This book gives methods for each of the drug development steps, from the fundamentals to postapproval drug product. AI is a synergistic assembly of enhanced optimization strategies with particular applications in pharmaceutical development and advanced tools for promoting cost-effectiveness throughout the drug lifecycle. Specifically, AI brings together the potential to improve drug approval rates, reduce development costs, get medications to patients faster, and help patients comply with their treatments.Accelerated pharmaceutical development and drug product approval rates will enable larger profits from patent-protected market exclusivity. This book offers the tools and knowledge to create the right AI strategy to extend the landscape of AI applications across the drug lifecycle. It is especially useful for pharmaceutical scientists, health care professionals, and regulatory scientists, as well as advanced students and postgraduates actively involved in pharmaceutical product and process development involving the use of artificial intelligence in drug delivery applications. - Classifies AI methodologies and application examples into different categories representing the various steps of the drug development cycle - Combines timely literature review with clear artworks to improve understanding - Examines deep learning and machine learning in drug discovery
Artificial Intelligence in Healthcare
Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385
Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385
Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Artificial Intelligence in Drug Discovery
Author: Nathan Brown
Publisher: Royal Society of Chemistry
ISBN: 1839160543
Category : Computers
Languages : en
Pages : 425
Book Description
Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.
Publisher: Royal Society of Chemistry
ISBN: 1839160543
Category : Computers
Languages : en
Pages : 425
Book Description
Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.
A Handbook of Artificial Intelligence in Drug Delivery
Author: Anil K. Philip
Publisher: Academic Press
ISBN: 0323903738
Category : Computers
Languages : en
Pages : 644
Book Description
A Handbook of Artificial Intelligence in Drug Delivery explores the use of Artificial Intelligence (AI) in drug delivery strategies. The book covers pharmaceutical AI and drug discovery challenges, Artificial Intelligence tools for drug research, AI enabled intelligent drug delivery systems and next generation novel therapeutics, broad utility of AI for designing novel micro/nanosystems for drug delivery, AI driven personalized medicine and Gene therapy, 3D Organ printing and tissue engineering, Advanced nanosystems based on AI principles (nanorobots, nanomachines), opportunities and challenges using artificial intelligence in ADME/Tox in drug development, commercialization and regulatory perspectives, ethics in AI, and more. This book will be useful to academic and industrial researchers interested in drug delivery, chemical biology, computational chemistry, medicinal chemistry and bioinformatics. The massive time and costs investments in drug research and development necessitate application of more innovative techniques and smart strategies. - Focuses on the use of Artificial Intelligence in drug delivery strategies and future impacts - Provides insights into how artificial intelligence can be effectively used for the development of advanced drug delivery systems - Written by experts in the field of advanced drug delivery systems and digital health
Publisher: Academic Press
ISBN: 0323903738
Category : Computers
Languages : en
Pages : 644
Book Description
A Handbook of Artificial Intelligence in Drug Delivery explores the use of Artificial Intelligence (AI) in drug delivery strategies. The book covers pharmaceutical AI and drug discovery challenges, Artificial Intelligence tools for drug research, AI enabled intelligent drug delivery systems and next generation novel therapeutics, broad utility of AI for designing novel micro/nanosystems for drug delivery, AI driven personalized medicine and Gene therapy, 3D Organ printing and tissue engineering, Advanced nanosystems based on AI principles (nanorobots, nanomachines), opportunities and challenges using artificial intelligence in ADME/Tox in drug development, commercialization and regulatory perspectives, ethics in AI, and more. This book will be useful to academic and industrial researchers interested in drug delivery, chemical biology, computational chemistry, medicinal chemistry and bioinformatics. The massive time and costs investments in drug research and development necessitate application of more innovative techniques and smart strategies. - Focuses on the use of Artificial Intelligence in drug delivery strategies and future impacts - Provides insights into how artificial intelligence can be effectively used for the development of advanced drug delivery systems - Written by experts in the field of advanced drug delivery systems and digital health
Artificial intelligence in Pharmaceutical Sciences
Author: Mullaicharam Bhupathyraaj
Publisher: CRC Press
ISBN: 1000994554
Category : Medical
Languages : en
Pages : 181
Book Description
This cutting-edge reference book discusses the intervention of artificial intelligence in the fields of drug development, modified drug delivery systems, pharmaceutical technology, and medical devices development. This comprehensive book includes an overview of artificial intelligence in pharmaceutical sciences and applications in the drug discovery and development process. It discusses the role of machine learning in the automated detection and sorting of pharmaceutical formulations. It covers nanosafety and the role of artificial intelligence in predicting potential adverse biological effects. FEATURES Includes lucid, step-by-step instructions to apply artificial intelligence and machine learning in pharmaceutical sciences Explores the application of artificial intelligence in nanosafety and prediction of potential hazards Covers application of artificial intelligence in drug discovery and drug development Reviews the role of artificial intelligence in assessment of pharmaceutical formulations Provides artificial intelligence solutions for experts in the pharmaceutical and medical devices industries This book is meant for academicians, students, and industry experts in pharmaceutical sciences, medicine, and pharmacology.
Publisher: CRC Press
ISBN: 1000994554
Category : Medical
Languages : en
Pages : 181
Book Description
This cutting-edge reference book discusses the intervention of artificial intelligence in the fields of drug development, modified drug delivery systems, pharmaceutical technology, and medical devices development. This comprehensive book includes an overview of artificial intelligence in pharmaceutical sciences and applications in the drug discovery and development process. It discusses the role of machine learning in the automated detection and sorting of pharmaceutical formulations. It covers nanosafety and the role of artificial intelligence in predicting potential adverse biological effects. FEATURES Includes lucid, step-by-step instructions to apply artificial intelligence and machine learning in pharmaceutical sciences Explores the application of artificial intelligence in nanosafety and prediction of potential hazards Covers application of artificial intelligence in drug discovery and drug development Reviews the role of artificial intelligence in assessment of pharmaceutical formulations Provides artificial intelligence solutions for experts in the pharmaceutical and medical devices industries This book is meant for academicians, students, and industry experts in pharmaceutical sciences, medicine, and pharmacology.
Regulating Artificial Intelligence
Author: Thomas Wischmeyer
Publisher: Springer Nature
ISBN: 3030323617
Category : Law
Languages : en
Pages : 391
Book Description
This book assesses the normative and practical challenges for artificial intelligence (AI) regulation, offers comprehensive information on the laws that currently shape or restrict the design or use of AI, and develops policy recommendations for those areas in which regulation is most urgently needed. By gathering contributions from scholars who are experts in their respective fields of legal research, it demonstrates that AI regulation is not a specialized sub-discipline, but affects the entire legal system and thus concerns all lawyers. Machine learning-based technology, which lies at the heart of what is commonly referred to as AI, is increasingly being employed to make policy and business decisions with broad social impacts, and therefore runs the risk of causing wide-scale damage. At the same time, AI technology is becoming more and more complex and difficult to understand, making it harder to determine whether or not it is being used in accordance with the law. In light of this situation, even tech enthusiasts are calling for stricter regulation of AI. Legislators, too, are stepping in and have begun to pass AI laws, including the prohibition of automated decision-making systems in Article 22 of the General Data Protection Regulation, the New York City AI transparency bill, and the 2017 amendments to the German Cartel Act and German Administrative Procedure Act. While the belief that something needs to be done is widely shared, there is far less clarity about what exactly can or should be done, or what effective regulation might look like. The book is divided into two major parts, the first of which focuses on features common to most AI systems, and explores how they relate to the legal framework for data-driven technologies, which already exists in the form of (national and supra-national) constitutional law, EU data protection and competition law, and anti-discrimination law. In the second part, the book examines in detail a number of relevant sectors in which AI is increasingly shaping decision-making processes, ranging from the notorious social media and the legal, financial and healthcare industries, to fields like law enforcement and tax law, in which we can observe how regulation by AI is becoming a reality.
Publisher: Springer Nature
ISBN: 3030323617
Category : Law
Languages : en
Pages : 391
Book Description
This book assesses the normative and practical challenges for artificial intelligence (AI) regulation, offers comprehensive information on the laws that currently shape or restrict the design or use of AI, and develops policy recommendations for those areas in which regulation is most urgently needed. By gathering contributions from scholars who are experts in their respective fields of legal research, it demonstrates that AI regulation is not a specialized sub-discipline, but affects the entire legal system and thus concerns all lawyers. Machine learning-based technology, which lies at the heart of what is commonly referred to as AI, is increasingly being employed to make policy and business decisions with broad social impacts, and therefore runs the risk of causing wide-scale damage. At the same time, AI technology is becoming more and more complex and difficult to understand, making it harder to determine whether or not it is being used in accordance with the law. In light of this situation, even tech enthusiasts are calling for stricter regulation of AI. Legislators, too, are stepping in and have begun to pass AI laws, including the prohibition of automated decision-making systems in Article 22 of the General Data Protection Regulation, the New York City AI transparency bill, and the 2017 amendments to the German Cartel Act and German Administrative Procedure Act. While the belief that something needs to be done is widely shared, there is far less clarity about what exactly can or should be done, or what effective regulation might look like. The book is divided into two major parts, the first of which focuses on features common to most AI systems, and explores how they relate to the legal framework for data-driven technologies, which already exists in the form of (national and supra-national) constitutional law, EU data protection and competition law, and anti-discrimination law. In the second part, the book examines in detail a number of relevant sectors in which AI is increasingly shaping decision-making processes, ranging from the notorious social media and the legal, financial and healthcare industries, to fields like law enforcement and tax law, in which we can observe how regulation by AI is becoming a reality.
Data Science, AI, and Machine Learning in Drug Development
Author: Harry Yang
Publisher: CRC Press
ISBN: 100065267X
Category : Business & Economics
Languages : en
Pages : 335
Book Description
The confluence of big data, artificial intelligence (AI), and machine learning (ML) has led to a paradigm shift in how innovative medicines are developed and healthcare delivered. To fully capitalize on these technological advances, it is essential to systematically harness data from diverse sources and leverage digital technologies and advanced analytics to enable data-driven decisions. Data science stands at a unique moment of opportunity to lead such a transformative change. Intended to be a single source of information, Data Science, AI, and Machine Learning in Drug Research and Development covers a wide range of topics on the changing landscape of drug R & D, emerging applications of big data, AI and ML in drug development, and the build of robust data science organizations to drive biopharmaceutical digital transformations. Features Provides a comprehensive review of challenges and opportunities as related to the applications of big data, AI, and ML in the entire spectrum of drug R & D Discusses regulatory developments in leveraging big data and advanced analytics in drug review and approval Offers a balanced approach to data science organization build Presents real-world examples of AI-powered solutions to a host of issues in the lifecycle of drug development Affords sufficient context for each problem and provides a detailed description of solutions suitable for practitioners with limited data science expertise
Publisher: CRC Press
ISBN: 100065267X
Category : Business & Economics
Languages : en
Pages : 335
Book Description
The confluence of big data, artificial intelligence (AI), and machine learning (ML) has led to a paradigm shift in how innovative medicines are developed and healthcare delivered. To fully capitalize on these technological advances, it is essential to systematically harness data from diverse sources and leverage digital technologies and advanced analytics to enable data-driven decisions. Data science stands at a unique moment of opportunity to lead such a transformative change. Intended to be a single source of information, Data Science, AI, and Machine Learning in Drug Research and Development covers a wide range of topics on the changing landscape of drug R & D, emerging applications of big data, AI and ML in drug development, and the build of robust data science organizations to drive biopharmaceutical digital transformations. Features Provides a comprehensive review of challenges and opportunities as related to the applications of big data, AI, and ML in the entire spectrum of drug R & D Discusses regulatory developments in leveraging big data and advanced analytics in drug review and approval Offers a balanced approach to data science organization build Presents real-world examples of AI-powered solutions to a host of issues in the lifecycle of drug development Affords sufficient context for each problem and provides a detailed description of solutions suitable for practitioners with limited data science expertise
Bioinformatics Tools for Pharmaceutical Drug Product Development
Author: Vivek Chavda
Publisher: John Wiley & Sons
ISBN: 1119865115
Category : Medical
Languages : en
Pages : 452
Book Description
BIOINFORMATICS TOOLS FOR Pharmaceutical DRUG PRODUCT DLEVELOPMENT A timely book that details bioinformatics tools, artificial intelligence, machine learning, computational methods, protein interactions, peptide-based drug design, and omics technologies, for drug development in the pharmaceutical and medical sciences industries. The book contains 17 chapters categorized into 3 sections. The first section presents the latest information on bioinformatics tools, artificial intelligence, machine learning, computational methods, protein interactions, peptide-based drug design, and omics technologies. The following 2 sections include bioinformatics tools for the pharmaceutical sector and the healthcare sector. Bioinformatics brings a new era in research to accelerate drug target and vaccine design development, improving validation approaches as well as facilitating and identifying side effects and predicting drug resistance. As such, this will aid in more successful drug candidates from discovery to clinical trials to the market, and most importantly make it a more cost-effective process overall. Readers will find in this book: Applications of bioinformatics tools for pharmaceutical drug product development like process development, pre-clinical development, clinical development, commercialization of the product, etc.; The ever-expanding application of this novel technology and discusses some of the unique challenges associated with such an approach; The broad and deep background, as well as updates, on recent advances in both medicine and AI/ML that enable the application of these cutting-edge bioinformatics tools. Audience The book will be used by researchers and scientists in academia and industry including drug developers, computational biochemists, bioinformaticians, immunologists, pharmaceutical and medical sciences, as well as those in artificial intelligence and machine learning.
Publisher: John Wiley & Sons
ISBN: 1119865115
Category : Medical
Languages : en
Pages : 452
Book Description
BIOINFORMATICS TOOLS FOR Pharmaceutical DRUG PRODUCT DLEVELOPMENT A timely book that details bioinformatics tools, artificial intelligence, machine learning, computational methods, protein interactions, peptide-based drug design, and omics technologies, for drug development in the pharmaceutical and medical sciences industries. The book contains 17 chapters categorized into 3 sections. The first section presents the latest information on bioinformatics tools, artificial intelligence, machine learning, computational methods, protein interactions, peptide-based drug design, and omics technologies. The following 2 sections include bioinformatics tools for the pharmaceutical sector and the healthcare sector. Bioinformatics brings a new era in research to accelerate drug target and vaccine design development, improving validation approaches as well as facilitating and identifying side effects and predicting drug resistance. As such, this will aid in more successful drug candidates from discovery to clinical trials to the market, and most importantly make it a more cost-effective process overall. Readers will find in this book: Applications of bioinformatics tools for pharmaceutical drug product development like process development, pre-clinical development, clinical development, commercialization of the product, etc.; The ever-expanding application of this novel technology and discusses some of the unique challenges associated with such an approach; The broad and deep background, as well as updates, on recent advances in both medicine and AI/ML that enable the application of these cutting-edge bioinformatics tools. Audience The book will be used by researchers and scientists in academia and industry including drug developers, computational biochemists, bioinformaticians, immunologists, pharmaceutical and medical sciences, as well as those in artificial intelligence and machine learning.
2021 International Conference on Big Data Analytics for Cyber-Physical System in Smart City
Author: Mohammed Atiquzzaman
Publisher: Springer Nature
ISBN: 9811674698
Category : Technology & Engineering
Languages : en
Pages : 1157
Book Description
This book gathers a selection of peer-reviewed papers presented at the third Big Data Analytics for Cyber-Physical System in Smart City (BDCPS 2021) conference, held in Shanghai, China, on Nov. 27, 2021. The contributions, prepared by an international team of scientists and engineers, cover the latest advances made in the field of machine learning, and big data analytics methods and approaches for the data-driven co-design of communication, computing, and control for smart cities. Given its scope, it offers a valuable resource for all researchers and professionals interested in big data, smart cities, and cyber-physical systems.
Publisher: Springer Nature
ISBN: 9811674698
Category : Technology & Engineering
Languages : en
Pages : 1157
Book Description
This book gathers a selection of peer-reviewed papers presented at the third Big Data Analytics for Cyber-Physical System in Smart City (BDCPS 2021) conference, held in Shanghai, China, on Nov. 27, 2021. The contributions, prepared by an international team of scientists and engineers, cover the latest advances made in the field of machine learning, and big data analytics methods and approaches for the data-driven co-design of communication, computing, and control for smart cities. Given its scope, it offers a valuable resource for all researchers and professionals interested in big data, smart cities, and cyber-physical systems.
Impact of Smart Technologies and Artificial Intelligence (AI) Paving Path Towards Interdisciplinary Research in the Fields of Engineering, Arts, Humanities, Commerce, Economics, Social Sciences, Law and Management - Challenges and Opportunities
Author: Dr. Sundari Suresh
Publisher: Shanlax Publications
ISBN: 9391373127
Category : Language Arts & Disciplines
Languages : en
Pages : 332
Book Description
This e-ISBN collection of 34 chapters draws on the diverse insights of the opportunities and emerging challenges, changes in the smart technologies and artificial intelligence{AI} paving path towards interdisciplinary research in the fields of Engineering, Arts, Humanities, Commerce, Economics, Social Sciences, Law and Management. It offers decision-makers a comprehensive picture of the impact of Smart technologies and Artificial Intelligence (AI) expected in the long-term changes, and inspiration to leverage the opportunities that offer to improve the state of education. Academicians must find and establish a new equilibrium and a new normal for learning amid the present challenges.
Publisher: Shanlax Publications
ISBN: 9391373127
Category : Language Arts & Disciplines
Languages : en
Pages : 332
Book Description
This e-ISBN collection of 34 chapters draws on the diverse insights of the opportunities and emerging challenges, changes in the smart technologies and artificial intelligence{AI} paving path towards interdisciplinary research in the fields of Engineering, Arts, Humanities, Commerce, Economics, Social Sciences, Law and Management. It offers decision-makers a comprehensive picture of the impact of Smart technologies and Artificial Intelligence (AI) expected in the long-term changes, and inspiration to leverage the opportunities that offer to improve the state of education. Academicians must find and establish a new equilibrium and a new normal for learning amid the present challenges.