Author: Rubee Singh
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111173259
Category : Business & Economics
Languages : en
Pages : 249
Book Description
Companies in developing countries are adopting Artificial Intelligence applications to increase efficiency and open new markets for their products. This book explores the multifarious capabilities and applications of AI in the context of these emerging economies and its role as a driver for decision making in current management practices. Artificial Intelligence Enabled Management argues that the economic problems facing academics, professionals, managers, governments, businesses and those at the bottom of the economic pyramid have a technical solution that relates to AI. Businesses in developing countries are using cutting-edge AI-based solutions to improve autonomous delivery of goods and services, implement automation of production and develop mobile apps for services and access to credit. By integrating data from websites, social media and conventional channels, companies are developing data management platforms, good business plans and creative business models. By increasing productivity, automating business processes, financial solutions and government services, AI can drive economic growth in these emerging economies. Public and private sectors can work together to find innovative solutions that simultaneously alleviate poverty and inequality and increase economic mobility and prosperity. The thought-provoking contributions in this book also bring attention to new barriers that have emerged in the acceptance, use, integration and deployment of AI by businesses in developing countries and explore the often-overlooked drawbacks of AI adoption that can hinder or even cause value loss. The book is a must-read for policymakers, researchers, and anyone interested in understanding the critical role of AI in the emerging economy perspective.
Artificial Intelligence Enabled Management
Author: Rubee Singh
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111173259
Category : Business & Economics
Languages : en
Pages : 249
Book Description
Companies in developing countries are adopting Artificial Intelligence applications to increase efficiency and open new markets for their products. This book explores the multifarious capabilities and applications of AI in the context of these emerging economies and its role as a driver for decision making in current management practices. Artificial Intelligence Enabled Management argues that the economic problems facing academics, professionals, managers, governments, businesses and those at the bottom of the economic pyramid have a technical solution that relates to AI. Businesses in developing countries are using cutting-edge AI-based solutions to improve autonomous delivery of goods and services, implement automation of production and develop mobile apps for services and access to credit. By integrating data from websites, social media and conventional channels, companies are developing data management platforms, good business plans and creative business models. By increasing productivity, automating business processes, financial solutions and government services, AI can drive economic growth in these emerging economies. Public and private sectors can work together to find innovative solutions that simultaneously alleviate poverty and inequality and increase economic mobility and prosperity. The thought-provoking contributions in this book also bring attention to new barriers that have emerged in the acceptance, use, integration and deployment of AI by businesses in developing countries and explore the often-overlooked drawbacks of AI adoption that can hinder or even cause value loss. The book is a must-read for policymakers, researchers, and anyone interested in understanding the critical role of AI in the emerging economy perspective.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111173259
Category : Business & Economics
Languages : en
Pages : 249
Book Description
Companies in developing countries are adopting Artificial Intelligence applications to increase efficiency and open new markets for their products. This book explores the multifarious capabilities and applications of AI in the context of these emerging economies and its role as a driver for decision making in current management practices. Artificial Intelligence Enabled Management argues that the economic problems facing academics, professionals, managers, governments, businesses and those at the bottom of the economic pyramid have a technical solution that relates to AI. Businesses in developing countries are using cutting-edge AI-based solutions to improve autonomous delivery of goods and services, implement automation of production and develop mobile apps for services and access to credit. By integrating data from websites, social media and conventional channels, companies are developing data management platforms, good business plans and creative business models. By increasing productivity, automating business processes, financial solutions and government services, AI can drive economic growth in these emerging economies. Public and private sectors can work together to find innovative solutions that simultaneously alleviate poverty and inequality and increase economic mobility and prosperity. The thought-provoking contributions in this book also bring attention to new barriers that have emerged in the acceptance, use, integration and deployment of AI by businesses in developing countries and explore the often-overlooked drawbacks of AI adoption that can hinder or even cause value loss. The book is a must-read for policymakers, researchers, and anyone interested in understanding the critical role of AI in the emerging economy perspective.
Enterprise Artificial Intelligence Transformation
Author: Rashed Haq
Publisher: John Wiley & Sons
ISBN: 1119665973
Category : Business & Economics
Languages : en
Pages : 368
Book Description
Enterprise Artificial Intelligence Transformation AI is everywhere. From doctor's offices to cars and even refrigerators, AI technology is quickly infiltrating our daily lives. AI has the ability to transform simple tasks into technological feats at a human level. This will change the world, plain and simple. That's why AI mastery is such a sought-after skill for tech professionals. Author Rashed Haq is a subject matter expert on AI, having developed AI and data science strategies, platforms, and applications for Publicis Sapient's clients for over 10 years. He shares that expertise in the new book, Enterprise Artificial Intelligence Transformation. The first of its kind, this book grants technology leaders the insight to create and scale their AI capabilities and bring their companies into the new generation of technology. As AI continues to grow into a necessary feature for many businesses, more and more leaders are interested in harnessing the technology within their own organizations. In this new book, leaders will learn to master AI fundamentals, grow their career opportunities, and gain confidence in machine learning. Enterprise Artificial Intelligence Transformation covers a wide range of topics, including: Real-world AI use cases and examples Machine learning, deep learning, and slimantic modeling Risk management of AI models AI strategies for development and expansion AI Center of Excellence creating and management If you're an industry, business, or technology professional that wants to attain the skills needed to grow your machine learning capabilities and effectively scale the work you're already doing, you'll find what you need in Enterprise Artificial Intelligence Transformation.
Publisher: John Wiley & Sons
ISBN: 1119665973
Category : Business & Economics
Languages : en
Pages : 368
Book Description
Enterprise Artificial Intelligence Transformation AI is everywhere. From doctor's offices to cars and even refrigerators, AI technology is quickly infiltrating our daily lives. AI has the ability to transform simple tasks into technological feats at a human level. This will change the world, plain and simple. That's why AI mastery is such a sought-after skill for tech professionals. Author Rashed Haq is a subject matter expert on AI, having developed AI and data science strategies, platforms, and applications for Publicis Sapient's clients for over 10 years. He shares that expertise in the new book, Enterprise Artificial Intelligence Transformation. The first of its kind, this book grants technology leaders the insight to create and scale their AI capabilities and bring their companies into the new generation of technology. As AI continues to grow into a necessary feature for many businesses, more and more leaders are interested in harnessing the technology within their own organizations. In this new book, leaders will learn to master AI fundamentals, grow their career opportunities, and gain confidence in machine learning. Enterprise Artificial Intelligence Transformation covers a wide range of topics, including: Real-world AI use cases and examples Machine learning, deep learning, and slimantic modeling Risk management of AI models AI strategies for development and expansion AI Center of Excellence creating and management If you're an industry, business, or technology professional that wants to attain the skills needed to grow your machine learning capabilities and effectively scale the work you're already doing, you'll find what you need in Enterprise Artificial Intelligence Transformation.
Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing
Author: Amit Kumar Tyagi
Publisher: John Wiley & Sons
ISBN: 1394303580
Category : Computers
Languages : en
Pages : 628
Book Description
An essential book on the applications of AI and digital twin technology in the smart manufacturing sector. In the rapidly evolving landscape of modern manufacturing, the integration of cutting-edge technologies has become imperative for businesses to remain competitive and adaptive. Among these technologies, Artificial Intelligence (AI) stands out as a transformative force, revolutionizing traditional manufacturing processes and making the way for the era of smart manufacturing. At the heart of this technological revolution lies the concept of the Digital Twin—an innovative approach that bridges the physical and digital realms of manufacturing. By creating a virtual representation of physical assets, processes, and systems, organizations can gain unprecedented insights, optimize operations, and enhance decision-making capabilities. This timely book explores the convergence of AI and Digital Twin technologies to empower smart manufacturing initiatives. Through a comprehensive examination of principles, methodologies, and practical applications, it explains the transformative potential of AI-enabled Digital Twins across various facets of the manufacturing lifecycle. From design and prototyping to production and maintenance, AI-enabled Digital Twins offer multifaceted advantages that redefine traditional paradigms. By leveraging AI algorithms for data analysis, predictive modeling, and autonomous optimization, manufacturers can achieve unparalleled levels of efficiency, quality, and agility. This book explains how AI enhances the capabilities of Digital Twins by creating a powerful tool that can optimize production processes, improve product quality, and streamline operations. Note that the Digital Twin in this context is a virtual representation of a physical manufacturing system, including machines, processes, and products. It continuously collects real-time data from sensors and other sources, allowing it to mirror the physical system’s behavior and performance. What sets this Digital Twin apart is the incorporation of AI algorithms and machine learning techniques that enable it to analyze and predict outcomes, recommend improvements, and autonomously make adjustments to enhance manufacturing efficiency. This book outlines essential elements, like real-time monitoring of machines, predictive analytics of machines and data, optimization of the resources, quality control of the product, resource management, decision support (timely or quickly accurate decisions). Moreover, this book elucidates the symbiotic relationship between AI and Digital Twins, highlighting how AI augments the capabilities of Digital Twins by infusing them with intelligence, adaptability, and autonomy. Hence, this book promises to enhance competitiveness, reduce operational costs, and facilitate innovation in the manufacturing industry. By harnessing AI’s capabilities in conjunction with Digital Twins, manufacturers can achieve a more agile and responsive production environment, ultimately driving the evolution of smart factories and Industry 4.0/5.0. Audience This book has a wide audience in computer science, artificial intelligence, and manufacturing engineering, as well as engineers in a variety of industrial manufacturing industries. It will also appeal to economists and policymakers working on the circular economy, clean tech investors, industrial decision-makers, and environmental professionals.
Publisher: John Wiley & Sons
ISBN: 1394303580
Category : Computers
Languages : en
Pages : 628
Book Description
An essential book on the applications of AI and digital twin technology in the smart manufacturing sector. In the rapidly evolving landscape of modern manufacturing, the integration of cutting-edge technologies has become imperative for businesses to remain competitive and adaptive. Among these technologies, Artificial Intelligence (AI) stands out as a transformative force, revolutionizing traditional manufacturing processes and making the way for the era of smart manufacturing. At the heart of this technological revolution lies the concept of the Digital Twin—an innovative approach that bridges the physical and digital realms of manufacturing. By creating a virtual representation of physical assets, processes, and systems, organizations can gain unprecedented insights, optimize operations, and enhance decision-making capabilities. This timely book explores the convergence of AI and Digital Twin technologies to empower smart manufacturing initiatives. Through a comprehensive examination of principles, methodologies, and practical applications, it explains the transformative potential of AI-enabled Digital Twins across various facets of the manufacturing lifecycle. From design and prototyping to production and maintenance, AI-enabled Digital Twins offer multifaceted advantages that redefine traditional paradigms. By leveraging AI algorithms for data analysis, predictive modeling, and autonomous optimization, manufacturers can achieve unparalleled levels of efficiency, quality, and agility. This book explains how AI enhances the capabilities of Digital Twins by creating a powerful tool that can optimize production processes, improve product quality, and streamline operations. Note that the Digital Twin in this context is a virtual representation of a physical manufacturing system, including machines, processes, and products. It continuously collects real-time data from sensors and other sources, allowing it to mirror the physical system’s behavior and performance. What sets this Digital Twin apart is the incorporation of AI algorithms and machine learning techniques that enable it to analyze and predict outcomes, recommend improvements, and autonomously make adjustments to enhance manufacturing efficiency. This book outlines essential elements, like real-time monitoring of machines, predictive analytics of machines and data, optimization of the resources, quality control of the product, resource management, decision support (timely or quickly accurate decisions). Moreover, this book elucidates the symbiotic relationship between AI and Digital Twins, highlighting how AI augments the capabilities of Digital Twins by infusing them with intelligence, adaptability, and autonomy. Hence, this book promises to enhance competitiveness, reduce operational costs, and facilitate innovation in the manufacturing industry. By harnessing AI’s capabilities in conjunction with Digital Twins, manufacturers can achieve a more agile and responsive production environment, ultimately driving the evolution of smart factories and Industry 4.0/5.0. Audience This book has a wide audience in computer science, artificial intelligence, and manufacturing engineering, as well as engineers in a variety of industrial manufacturing industries. It will also appeal to economists and policymakers working on the circular economy, clean tech investors, industrial decision-makers, and environmental professionals.
Artificial Intelligence-Enabled Blockchain Technology and Digital Twin for Smart Hospitals
Author: Amit Kumar Tyagi
Publisher: John Wiley & Sons
ISBN: 1394287399
Category : Computers
Languages : en
Pages : 500
Book Description
The book uniquely explores the fundamentals of blockchain and digital twin and their uses in smart hospitals. Artificial Intelligence-Enabled Blockchain Technology and Digital Twin for Smart Hospitals provides fundamental information on blockchain and digital twin technology as effective solutions in smart hospitals. Digital twin technology enables the creation of real-time virtual replicas of hospital assets and patients, enhancing predictive maintenance, operational efficiency, and patient care. Blockchain technology provides a secure and transparent platform for managing and sharing sensitive data, such as medical records and pharmaceutical supply chains. By combining these technologies, smart hospitals can ensure data security, interoperability, and streamlined operations while providing patient-centered care. The book also explores the impact of collected medical data from real-time systems in smart hospitals, and by making it accessible to all doctors via a smartphone or mobile device for fast decisions. Inevitable challenges such as privacy concerns and integration costs must, of course, be addressed. However, the potential benefits in terms of improved healthcare quality, reduced costs, and global health initiatives makes the integration of these technologies a compelling avenue for the future of healthcare. Some of the topics that readers will find in this book include: Wireless Medical Sensor Networks in Smart Hospitals ● DNA Computing in Cryptography ● Enhancing Diabetic Retinopathy and Glaucoma Diagnosis through Efficient Retinal Vessel Segmentation and Disease Classification ● Machine Learning-Enabled Digital Twins for Diagnostic And Therapeutic Purposes ● Blockchain as the Backbone of a Connected Ecosystem of Smart Hospitals ● Blockchain for Edge Association in Digital Twin Empowered 6G Networks ● Blockchain for Security and Privacy in Smart Healthcare ● Blockchain-Enabled Internet of Things (IoTs) Platforms for IoT-Based Healthcare and Biomedical Sector ● Electronic Health Records in a Blockchain ● PSO-Based Hybrid Cardiovascular Disease Prediction for Using Artificial Flora Algorithm ● AI and Transfer Learning Based Framework for Efficient Classification And Detection Of Lyme Disease ● Framework for Gender Detection Using Facial Countenances ● Smartphone-Based Sensors for Biomedical Applications ● Blockchain for Improving Security and Privacy in the Smart Sensor Network ● Sensors and Digital Twin Application in Healthcare Facilities Management ● Integration of Internet of Medical Things (IoMT) with Blockchain Technology to Improve Security and Privacy ● Machine Learning-Driven Digital Twins for Precise Brain Tumor and Breast Cancer Assessment ● Ethical and Technological Convergence: AI and Blockchain in Halal Healthcare ● Digital Twin Application in Healthcare Facilities Management ● Cloud-based Digital Twinning for Structural Health Monitoring Using Deep Learning. Audience The book will be read by hospital and healthcare providers, administrators, policymakers, scientists and engineers in artificial intelligence, information technology, electronics engineering, and related disciplines.
Publisher: John Wiley & Sons
ISBN: 1394287399
Category : Computers
Languages : en
Pages : 500
Book Description
The book uniquely explores the fundamentals of blockchain and digital twin and their uses in smart hospitals. Artificial Intelligence-Enabled Blockchain Technology and Digital Twin for Smart Hospitals provides fundamental information on blockchain and digital twin technology as effective solutions in smart hospitals. Digital twin technology enables the creation of real-time virtual replicas of hospital assets and patients, enhancing predictive maintenance, operational efficiency, and patient care. Blockchain technology provides a secure and transparent platform for managing and sharing sensitive data, such as medical records and pharmaceutical supply chains. By combining these technologies, smart hospitals can ensure data security, interoperability, and streamlined operations while providing patient-centered care. The book also explores the impact of collected medical data from real-time systems in smart hospitals, and by making it accessible to all doctors via a smartphone or mobile device for fast decisions. Inevitable challenges such as privacy concerns and integration costs must, of course, be addressed. However, the potential benefits in terms of improved healthcare quality, reduced costs, and global health initiatives makes the integration of these technologies a compelling avenue for the future of healthcare. Some of the topics that readers will find in this book include: Wireless Medical Sensor Networks in Smart Hospitals ● DNA Computing in Cryptography ● Enhancing Diabetic Retinopathy and Glaucoma Diagnosis through Efficient Retinal Vessel Segmentation and Disease Classification ● Machine Learning-Enabled Digital Twins for Diagnostic And Therapeutic Purposes ● Blockchain as the Backbone of a Connected Ecosystem of Smart Hospitals ● Blockchain for Edge Association in Digital Twin Empowered 6G Networks ● Blockchain for Security and Privacy in Smart Healthcare ● Blockchain-Enabled Internet of Things (IoTs) Platforms for IoT-Based Healthcare and Biomedical Sector ● Electronic Health Records in a Blockchain ● PSO-Based Hybrid Cardiovascular Disease Prediction for Using Artificial Flora Algorithm ● AI and Transfer Learning Based Framework for Efficient Classification And Detection Of Lyme Disease ● Framework for Gender Detection Using Facial Countenances ● Smartphone-Based Sensors for Biomedical Applications ● Blockchain for Improving Security and Privacy in the Smart Sensor Network ● Sensors and Digital Twin Application in Healthcare Facilities Management ● Integration of Internet of Medical Things (IoMT) with Blockchain Technology to Improve Security and Privacy ● Machine Learning-Driven Digital Twins for Precise Brain Tumor and Breast Cancer Assessment ● Ethical and Technological Convergence: AI and Blockchain in Halal Healthcare ● Digital Twin Application in Healthcare Facilities Management ● Cloud-based Digital Twinning for Structural Health Monitoring Using Deep Learning. Audience The book will be read by hospital and healthcare providers, administrators, policymakers, scientists and engineers in artificial intelligence, information technology, electronics engineering, and related disciplines.
Business Analytical Capabilities and Artificial Intelligence-Enabled Analytics: Applications and Challenges in the Digital Era, Volume 1
Author: Abdalmuttaleb M. A. Musleh Al-Sartawi
Publisher: Springer Nature
ISBN: 3031560159
Category :
Languages : en
Pages : 441
Book Description
Publisher: Springer Nature
ISBN: 3031560159
Category :
Languages : en
Pages : 441
Book Description
Working with AI
Author: Thomas H. Davenport
Publisher: MIT Press
ISBN: 0262047241
Category : Business & Economics
Languages : en
Pages : 312
Book Description
Two management and technology experts show that AI is not a job destroyer, exploring worker-AI collaboration in real-world work settings. This book breaks through both the hype and the doom-and-gloom surrounding automation and the deployment of artificial intelligence-enabled—“smart”—systems at work. Management and technology experts Thomas Davenport and Steven Miller show that, contrary to widespread predictions, prescriptions, and denunciations, AI is not primarily a job destroyer. Rather, AI changes the way we work—by taking over some tasks but not entire jobs, freeing people to do other, more important and more challenging work. By offering detailed, real-world case studies of AI-augmented jobs in settings that range from finance to the factory floor, Davenport and Miller also show that AI in the workplace is not the stuff of futuristic speculation. It is happening now to many companies and workers. These cases include a digital system for life insurance underwriting that analyzes applications and third-party data in real time, allowing human underwriters to focus on more complex cases; an intelligent telemedicine platform with a chat-based interface; a machine learning-system that identifies impending train maintenance issues by analyzing diesel fuel samples; and Flippy, a robotic assistant for fast food preparation. For each one, Davenport and Miller describe in detail the work context for the system, interviewing job incumbents, managers, and technology vendors. Short “insight” chapters draw out common themes and consider the implications of human collaboration with smart systems.
Publisher: MIT Press
ISBN: 0262047241
Category : Business & Economics
Languages : en
Pages : 312
Book Description
Two management and technology experts show that AI is not a job destroyer, exploring worker-AI collaboration in real-world work settings. This book breaks through both the hype and the doom-and-gloom surrounding automation and the deployment of artificial intelligence-enabled—“smart”—systems at work. Management and technology experts Thomas Davenport and Steven Miller show that, contrary to widespread predictions, prescriptions, and denunciations, AI is not primarily a job destroyer. Rather, AI changes the way we work—by taking over some tasks but not entire jobs, freeing people to do other, more important and more challenging work. By offering detailed, real-world case studies of AI-augmented jobs in settings that range from finance to the factory floor, Davenport and Miller also show that AI in the workplace is not the stuff of futuristic speculation. It is happening now to many companies and workers. These cases include a digital system for life insurance underwriting that analyzes applications and third-party data in real time, allowing human underwriters to focus on more complex cases; an intelligent telemedicine platform with a chat-based interface; a machine learning-system that identifies impending train maintenance issues by analyzing diesel fuel samples; and Flippy, a robotic assistant for fast food preparation. For each one, Davenport and Miller describe in detail the work context for the system, interviewing job incumbents, managers, and technology vendors. Short “insight” chapters draw out common themes and consider the implications of human collaboration with smart systems.
Business Analytical Capabilities and Artificial Intelligence-enabled Analytics: Applications and Challenges in the Digital Era, Volume 2
Author: Abdalmuttaleb M. A. Musleh Al-Sartawi
Publisher: Springer Nature
ISBN: 3031572424
Category : Artificial intelligence
Languages : en
Pages : 446
Book Description
Zusammenfassung: This book explores and discusses how businesses transit from big data and business analytics to artificial intelligence (AI), by examining advanced technologies and embracing challenges such as ethical issues, governance, security, privacy, and interoperability of capabilities. This book covers a range of topics including the application of cyber accounting and strategic objectives, financial inclusion, big data analytics in telecommunication sector, digital marketing strategies and sports brand loyalty, robotic processes automation in banks, and the applications of AI for decision-making in human resources, healthcare, banking, and many more. The book provides a comprehensive reference for scholars, students, managers, entrepreneurs, and policymakers by examining frameworks and business practice implications through its discussions which embrace a wide variety of unique topics on business analytics, AI, and how it can be applied together to address the challenges of the digital era
Publisher: Springer Nature
ISBN: 3031572424
Category : Artificial intelligence
Languages : en
Pages : 446
Book Description
Zusammenfassung: This book explores and discusses how businesses transit from big data and business analytics to artificial intelligence (AI), by examining advanced technologies and embracing challenges such as ethical issues, governance, security, privacy, and interoperability of capabilities. This book covers a range of topics including the application of cyber accounting and strategic objectives, financial inclusion, big data analytics in telecommunication sector, digital marketing strategies and sports brand loyalty, robotic processes automation in banks, and the applications of AI for decision-making in human resources, healthcare, banking, and many more. The book provides a comprehensive reference for scholars, students, managers, entrepreneurs, and policymakers by examining frameworks and business practice implications through its discussions which embrace a wide variety of unique topics on business analytics, AI, and how it can be applied together to address the challenges of the digital era
Artificial Intelligence for Managers
Author: Malay A. Upadhyay
Publisher: BPB Publications
ISBN: 9389898390
Category : Business & Economics
Languages : en
Pages : 166
Book Description
Understand how to adopt and implement AI in your organizationKey Featuresa- 7 Principles of an AI Journeya- The TUSCANE Approach to Become Data Readya- The FAB-4 Model to Choose the Right AI Solutiona- Major AI Techniques & their Applications:- CART & Ensemble Learning- Clustering, Association Rules & Search- Reinforcement Learning- Natural Language Processing- Image RecognitionDescriptionMost AI initiatives in organizations fail today not because of a lack of good AI solutions, but because of a lack of understanding of AI among its end users, decision makers and investors. Today, organizations need managers who can leverage AI to solve business problems and provide a competitive advantage. This book is designed to enable you to fill that need, and create an edge for your career.The chapters offer unique managerial frameworks to guide an organization's AI journey. The first section looks at what AI is; and how you can prepare for it, decide when to use it, and avoid pitfalls on the way. The second section dives into the different AI techniques and shows you where to apply them in business. The final section then prepares you from a strategic AI leadership perspective to lead the future of organizations.By the end of the book, you will be ready to offer any organization the capability to use AI successfully and responsibly - a need that is fast becoming a necessity.What will you learna- Understand the major AI techniques & how they are used in business.a- Determine which AI technique(s) can solve your business problem.a- Decide whether to build or buy an AI solution.a- Estimate the financial value of an AI solution or company.a- Frame a robust policy to guide the responsible use of AI.Who this book is forThis book is for Executives, Managers and Students on both Business and Technical teams who would like to use Artificial Intelligence effectively to solve business problems or get an edge in their careers.Table of Contents1.Preface2.Acknowledgement3.About the Author4.Section 1: Beginning an AI Journeya. AI Fundamentalsb. 7 Principles of an AI Journeyc. Getting Ready to Use AI5.Section 2: Choosing the Right AI Techniquesa. Inside the AI Laboratoryb. How AI Predicts Values & Categoriesc. How AI Understands and Predicts Behaviors & Scenariosd. How AI Communicates & Learns from Mistakese. How AI Starts to Think Like Humans6.Section 3: Using AI Successfully & Responsiblya. AI Adoption & Valuationb. AI Strategy, Policy & Risk Management7.EpilogueAbout the AuthorsMalay A. Upadhyay is a Customer Journey executive, certified in Machine Learning. Over the course of his role heading the function at a N. American AI SaaS firm in Toronto, Malay trained 150+ N. American managers on the basics of AI and its successful adoption, held executive thought leadership sessions for CEOs and CHROs on AI strategy & IT modernization roadmaps, and worked as the primary liaison to realize AI value on unique customer datasets. It was here that he learnt the growing need for greater knowledge and awareness of how to use AI both responsibly and successfully.Malay was also one of 25 individuals chosen globally to envision the industrial future for the Marzotto Group, Italy, on its 175th anniversary. He holds an MBA, M.Sc. and B.E., with experiences across India, UAE, Italy and Canada.A Duke of Edinburgh awardee, Malay has been driving the subject of responsible AI management as an advisor, author, online instructor and member of the European AI Alliance that informed the HLEG on the European Commission's AI policy.
Publisher: BPB Publications
ISBN: 9389898390
Category : Business & Economics
Languages : en
Pages : 166
Book Description
Understand how to adopt and implement AI in your organizationKey Featuresa- 7 Principles of an AI Journeya- The TUSCANE Approach to Become Data Readya- The FAB-4 Model to Choose the Right AI Solutiona- Major AI Techniques & their Applications:- CART & Ensemble Learning- Clustering, Association Rules & Search- Reinforcement Learning- Natural Language Processing- Image RecognitionDescriptionMost AI initiatives in organizations fail today not because of a lack of good AI solutions, but because of a lack of understanding of AI among its end users, decision makers and investors. Today, organizations need managers who can leverage AI to solve business problems and provide a competitive advantage. This book is designed to enable you to fill that need, and create an edge for your career.The chapters offer unique managerial frameworks to guide an organization's AI journey. The first section looks at what AI is; and how you can prepare for it, decide when to use it, and avoid pitfalls on the way. The second section dives into the different AI techniques and shows you where to apply them in business. The final section then prepares you from a strategic AI leadership perspective to lead the future of organizations.By the end of the book, you will be ready to offer any organization the capability to use AI successfully and responsibly - a need that is fast becoming a necessity.What will you learna- Understand the major AI techniques & how they are used in business.a- Determine which AI technique(s) can solve your business problem.a- Decide whether to build or buy an AI solution.a- Estimate the financial value of an AI solution or company.a- Frame a robust policy to guide the responsible use of AI.Who this book is forThis book is for Executives, Managers and Students on both Business and Technical teams who would like to use Artificial Intelligence effectively to solve business problems or get an edge in their careers.Table of Contents1.Preface2.Acknowledgement3.About the Author4.Section 1: Beginning an AI Journeya. AI Fundamentalsb. 7 Principles of an AI Journeyc. Getting Ready to Use AI5.Section 2: Choosing the Right AI Techniquesa. Inside the AI Laboratoryb. How AI Predicts Values & Categoriesc. How AI Understands and Predicts Behaviors & Scenariosd. How AI Communicates & Learns from Mistakese. How AI Starts to Think Like Humans6.Section 3: Using AI Successfully & Responsiblya. AI Adoption & Valuationb. AI Strategy, Policy & Risk Management7.EpilogueAbout the AuthorsMalay A. Upadhyay is a Customer Journey executive, certified in Machine Learning. Over the course of his role heading the function at a N. American AI SaaS firm in Toronto, Malay trained 150+ N. American managers on the basics of AI and its successful adoption, held executive thought leadership sessions for CEOs and CHROs on AI strategy & IT modernization roadmaps, and worked as the primary liaison to realize AI value on unique customer datasets. It was here that he learnt the growing need for greater knowledge and awareness of how to use AI both responsibly and successfully.Malay was also one of 25 individuals chosen globally to envision the industrial future for the Marzotto Group, Italy, on its 175th anniversary. He holds an MBA, M.Sc. and B.E., with experiences across India, UAE, Italy and Canada.A Duke of Edinburgh awardee, Malay has been driving the subject of responsible AI management as an advisor, author, online instructor and member of the European AI Alliance that informed the HLEG on the European Commission's AI policy.
Keeping Up with the Quants
Author: Thomas H. Davenport
Publisher: Harvard Business Press
ISBN: 1422187268
Category : Business & Economics
Languages : en
Pages : 241
Book Description
Why Everyone Needs Analytical Skills Welcome to the age of data. No matter your interests (sports, movies, politics), your industry (finance, marketing, technology, manufacturing), or the type of organization you work for (big company, nonprofit, small start-up)—your world is awash with data. As a successful manager today, you must be able to make sense of all this information. You need to be conversant with analytical terminology and methods and able to work with quantitative information. This book promises to become your “quantitative literacy" guide—helping you develop the analytical skills you need right now in order to summarize data, find the meaning in it, and extract its value. In Keeping Up with the Quants, authors, professors, and analytics experts Thomas Davenport and Jinho Kim offer practical tools to improve your understanding of data analytics and enhance your thinking and decision making. You’ll gain crucial skills, including: How to formulate a hypothesis How to gather and analyze relevant data How to interpret and communicate analytical results How to develop habits of quantitative thinking How to deal effectively with the “quants” in your organization Big data and the analytics based on it promise to change virtually every industry and business function over the next decade. If you don’t have a business degree or if you aren’t comfortable with statistics and quantitative methods, this book is for you. Keeping Up with the Quants will give you the skills you need to master this new challenge—and gain a significant competitive edge.
Publisher: Harvard Business Press
ISBN: 1422187268
Category : Business & Economics
Languages : en
Pages : 241
Book Description
Why Everyone Needs Analytical Skills Welcome to the age of data. No matter your interests (sports, movies, politics), your industry (finance, marketing, technology, manufacturing), or the type of organization you work for (big company, nonprofit, small start-up)—your world is awash with data. As a successful manager today, you must be able to make sense of all this information. You need to be conversant with analytical terminology and methods and able to work with quantitative information. This book promises to become your “quantitative literacy" guide—helping you develop the analytical skills you need right now in order to summarize data, find the meaning in it, and extract its value. In Keeping Up with the Quants, authors, professors, and analytics experts Thomas Davenport and Jinho Kim offer practical tools to improve your understanding of data analytics and enhance your thinking and decision making. You’ll gain crucial skills, including: How to formulate a hypothesis How to gather and analyze relevant data How to interpret and communicate analytical results How to develop habits of quantitative thinking How to deal effectively with the “quants” in your organization Big data and the analytics based on it promise to change virtually every industry and business function over the next decade. If you don’t have a business degree or if you aren’t comfortable with statistics and quantitative methods, this book is for you. Keeping Up with the Quants will give you the skills you need to master this new challenge—and gain a significant competitive edge.
Artificial Intelligence Enabled Signal Processing based Models for Neural Information Processing
Author: Rajesh Kumar Tripathy
Publisher: CRC Press
ISBN: 1040028772
Category : Technology & Engineering
Languages : en
Pages : 227
Book Description
The book provides details regarding the application of various signal processing and artificial intelligence-based methods for electroencephalography data analysis. It will help readers in understanding the use of electroencephalography signals for different neural information processing and cognitive neuroscience applications. The book: Covers topics related to the application of signal processing and machine learning-based techniques for the analysis and classification of electroencephalography signals Presents automated methods for detection of neurological disorders and other applications such as cognitive task recognition, and brain-computer interface Highlights the latest machine learning and deep learning methods for neural signal processing Discusses mathematical details for the signal processing and machine learning algorithms applied for electroencephalography data analysis Showcases the detection of dementia from electroencephalography signals using signal processing and machine learning-based techniques It is primarily written for senior undergraduates, graduate students, and researchers in the fields of electrical engineering, electronics and communications engineering, and biomedical engineering.
Publisher: CRC Press
ISBN: 1040028772
Category : Technology & Engineering
Languages : en
Pages : 227
Book Description
The book provides details regarding the application of various signal processing and artificial intelligence-based methods for electroencephalography data analysis. It will help readers in understanding the use of electroencephalography signals for different neural information processing and cognitive neuroscience applications. The book: Covers topics related to the application of signal processing and machine learning-based techniques for the analysis and classification of electroencephalography signals Presents automated methods for detection of neurological disorders and other applications such as cognitive task recognition, and brain-computer interface Highlights the latest machine learning and deep learning methods for neural signal processing Discusses mathematical details for the signal processing and machine learning algorithms applied for electroencephalography data analysis Showcases the detection of dementia from electroencephalography signals using signal processing and machine learning-based techniques It is primarily written for senior undergraduates, graduate students, and researchers in the fields of electrical engineering, electronics and communications engineering, and biomedical engineering.