Author: Boris Kovalerchuk
Publisher: Springer Nature
ISBN: 3031465490
Category : Artificial intelligence
Languages : en
Pages : 512
Book Description
Zusammenfassung: This book continues a series of Springer publications devoted to the emerging field of Integrated Artificial Intelligence and Machine Learning with Visual Knowledge Discovery and Visual Analytics that combine advances in both fields. Artificial Intelligence and Machine Learning face long-standing challenges of explainability and interpretability that underpin trust. Such attributes are fundamental to both decision-making and knowledge discovery. Models are approximations and, at best, interpretations of reality that are transposed to algorithmic form. A visual explanation paradigm is critically important to address such challenges, as current studies demonstrate in salience analysis in deep learning for images and texts. Visualization means are generally effective for discovering and explaining high-dimensional patterns in all high-dimensional data, while preserving data properties and relations in visualizations is challenging. Recent developments, such as in General Line Coordinates, open new opportunities to address such challenges. This book contains extended papers presented in 2021 and 2022 at the International Conference on Information Visualization (IV) on AI and Visual Analytics, with 18 chapters from international collaborators. The book builds on the previous volume, published in 2022 in the Studies in Computational Intelligence. The current book focuses on the following themes: knowledge discovery with lossless visualizations, AI/ML through visual knowledge discovery with visual analytics case studies application, and visual knowledge discovery in text mining and natural language processing. The intended audience for this collection includes but is not limited to developers of emerging AI/machine learning and visualization applications, scientists, practitioners, and research students. It has multiple examples of the current integration of AI/machine learning and visualization for visual knowledge discovery, visual analytics, and text and natural language processing. The book provides case examples for future directions in this domain. New researchers find inspiration to join the profession of the field of AI/machine learning through a visualization lens.
Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery
Author: Boris Kovalerchuk
Publisher: Springer Nature
ISBN: 3031465490
Category : Artificial intelligence
Languages : en
Pages : 512
Book Description
Zusammenfassung: This book continues a series of Springer publications devoted to the emerging field of Integrated Artificial Intelligence and Machine Learning with Visual Knowledge Discovery and Visual Analytics that combine advances in both fields. Artificial Intelligence and Machine Learning face long-standing challenges of explainability and interpretability that underpin trust. Such attributes are fundamental to both decision-making and knowledge discovery. Models are approximations and, at best, interpretations of reality that are transposed to algorithmic form. A visual explanation paradigm is critically important to address such challenges, as current studies demonstrate in salience analysis in deep learning for images and texts. Visualization means are generally effective for discovering and explaining high-dimensional patterns in all high-dimensional data, while preserving data properties and relations in visualizations is challenging. Recent developments, such as in General Line Coordinates, open new opportunities to address such challenges. This book contains extended papers presented in 2021 and 2022 at the International Conference on Information Visualization (IV) on AI and Visual Analytics, with 18 chapters from international collaborators. The book builds on the previous volume, published in 2022 in the Studies in Computational Intelligence. The current book focuses on the following themes: knowledge discovery with lossless visualizations, AI/ML through visual knowledge discovery with visual analytics case studies application, and visual knowledge discovery in text mining and natural language processing. The intended audience for this collection includes but is not limited to developers of emerging AI/machine learning and visualization applications, scientists, practitioners, and research students. It has multiple examples of the current integration of AI/machine learning and visualization for visual knowledge discovery, visual analytics, and text and natural language processing. The book provides case examples for future directions in this domain. New researchers find inspiration to join the profession of the field of AI/machine learning through a visualization lens.
Publisher: Springer Nature
ISBN: 3031465490
Category : Artificial intelligence
Languages : en
Pages : 512
Book Description
Zusammenfassung: This book continues a series of Springer publications devoted to the emerging field of Integrated Artificial Intelligence and Machine Learning with Visual Knowledge Discovery and Visual Analytics that combine advances in both fields. Artificial Intelligence and Machine Learning face long-standing challenges of explainability and interpretability that underpin trust. Such attributes are fundamental to both decision-making and knowledge discovery. Models are approximations and, at best, interpretations of reality that are transposed to algorithmic form. A visual explanation paradigm is critically important to address such challenges, as current studies demonstrate in salience analysis in deep learning for images and texts. Visualization means are generally effective for discovering and explaining high-dimensional patterns in all high-dimensional data, while preserving data properties and relations in visualizations is challenging. Recent developments, such as in General Line Coordinates, open new opportunities to address such challenges. This book contains extended papers presented in 2021 and 2022 at the International Conference on Information Visualization (IV) on AI and Visual Analytics, with 18 chapters from international collaborators. The book builds on the previous volume, published in 2022 in the Studies in Computational Intelligence. The current book focuses on the following themes: knowledge discovery with lossless visualizations, AI/ML through visual knowledge discovery with visual analytics case studies application, and visual knowledge discovery in text mining and natural language processing. The intended audience for this collection includes but is not limited to developers of emerging AI/machine learning and visualization applications, scientists, practitioners, and research students. It has multiple examples of the current integration of AI/machine learning and visualization for visual knowledge discovery, visual analytics, and text and natural language processing. The book provides case examples for future directions in this domain. New researchers find inspiration to join the profession of the field of AI/machine learning through a visualization lens.
Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery
Author: Boris Kovalerchuk
Publisher: Springer Nature
ISBN: 3030931196
Category : Technology & Engineering
Languages : en
Pages : 671
Book Description
This book is devoted to the emerging field of integrated visual knowledge discovery that combines advances in artificial intelligence/machine learning and visualization/visual analytic. A long-standing challenge of artificial intelligence (AI) and machine learning (ML) is explaining models to humans, especially for live-critical applications like health care. A model explanation is fundamentally human activity, not only an algorithmic one. As current deep learning studies demonstrate, it makes the paradigm based on the visual methods critically important to address this challenge. In general, visual approaches are critical for discovering explainable high-dimensional patterns in all types in high-dimensional data offering "n-D glasses," where preserving high-dimensional data properties and relations in visualizations is a major challenge. The current progress opens a fantastic opportunity in this domain. This book is a collection of 25 extended works of over 70 scholars presented at AI and visual analytics related symposia at the recent International Information Visualization Conferences with the goal of moving this integration to the next level. The sections of this book cover integrated systems, supervised learning, unsupervised learning, optimization, and evaluation of visualizations. The intended audience for this collection includes those developing and using emerging AI/machine learning and visualization methods. Scientists, practitioners, and students can find multiple examples of the current integration of AI/machine learning and visualization for visual knowledge discovery. The book provides a vision of future directions in this domain. New researchers will find here an inspiration to join the profession and to be involved for further development. Instructors in AI/ML and visualization classes can use it as a supplementary source in their undergraduate and graduate classes.
Publisher: Springer Nature
ISBN: 3030931196
Category : Technology & Engineering
Languages : en
Pages : 671
Book Description
This book is devoted to the emerging field of integrated visual knowledge discovery that combines advances in artificial intelligence/machine learning and visualization/visual analytic. A long-standing challenge of artificial intelligence (AI) and machine learning (ML) is explaining models to humans, especially for live-critical applications like health care. A model explanation is fundamentally human activity, not only an algorithmic one. As current deep learning studies demonstrate, it makes the paradigm based on the visual methods critically important to address this challenge. In general, visual approaches are critical for discovering explainable high-dimensional patterns in all types in high-dimensional data offering "n-D glasses," where preserving high-dimensional data properties and relations in visualizations is a major challenge. The current progress opens a fantastic opportunity in this domain. This book is a collection of 25 extended works of over 70 scholars presented at AI and visual analytics related symposia at the recent International Information Visualization Conferences with the goal of moving this integration to the next level. The sections of this book cover integrated systems, supervised learning, unsupervised learning, optimization, and evaluation of visualizations. The intended audience for this collection includes those developing and using emerging AI/machine learning and visualization methods. Scientists, practitioners, and students can find multiple examples of the current integration of AI/machine learning and visualization for visual knowledge discovery. The book provides a vision of future directions in this domain. New researchers will find here an inspiration to join the profession and to be involved for further development. Instructors in AI/ML and visualization classes can use it as a supplementary source in their undergraduate and graduate classes.
Information Visualization in Data Mining and Knowledge Discovery
Author: Usama M. Fayyad
Publisher: Morgan Kaufmann
ISBN: 9781558606890
Category : Computers
Languages : en
Pages : 446
Book Description
This text surveys research from the fields of data mining and information visualisation and presents a case for techniques by which information visualisation can be used to uncover real knowledge hidden away in large databases.
Publisher: Morgan Kaufmann
ISBN: 9781558606890
Category : Computers
Languages : en
Pages : 446
Book Description
This text surveys research from the fields of data mining and information visualisation and presents a case for techniques by which information visualisation can be used to uncover real knowledge hidden away in large databases.
Post-Mining of Association Rules: Techniques for Effective Knowledge Extraction
Author: Zhao, Yanchang
Publisher: IGI Global
ISBN: 1605664057
Category : Computers
Languages : en
Pages : 394
Book Description
Provides a systematic collection on post-mining, summarization and presentation of association rules, and new forms of association rules.
Publisher: IGI Global
ISBN: 1605664057
Category : Computers
Languages : en
Pages : 394
Book Description
Provides a systematic collection on post-mining, summarization and presentation of association rules, and new forms of association rules.
Conceptual Knowledge Structures
Author: Inma P. Cabrera
Publisher: Springer Nature
ISBN: 3031678680
Category :
Languages : en
Pages : 342
Book Description
Publisher: Springer Nature
ISBN: 3031678680
Category :
Languages : en
Pages : 342
Book Description
Advanced Computing and Intelligent Technologies
Author: Monica Bianchini
Publisher: Springer Nature
ISBN: 9811621640
Category : Technology & Engineering
Languages : en
Pages : 649
Book Description
This book gathers selected high-quality research papers presented at International Conference on Advanced Computing and Intelligent Technologies (ICACIT 2021) held at NCR New Delhi, India, during March 20–21, 2021, jointly organized by Galgotias University, India, and Department of Information Engineering and Mathematics Università Di Siena, Italy. It discusses emerging topics pertaining to advanced computing, intelligent technologies, and networks including AI and machine learning, data mining, big data analytics, high-performance computing network performance analysis, Internet of things networks, wireless sensor networks, and others. The book offers a valuable asset for researchers from both academia and industries involved in advanced studies.
Publisher: Springer Nature
ISBN: 9811621640
Category : Technology & Engineering
Languages : en
Pages : 649
Book Description
This book gathers selected high-quality research papers presented at International Conference on Advanced Computing and Intelligent Technologies (ICACIT 2021) held at NCR New Delhi, India, during March 20–21, 2021, jointly organized by Galgotias University, India, and Department of Information Engineering and Mathematics Università Di Siena, Italy. It discusses emerging topics pertaining to advanced computing, intelligent technologies, and networks including AI and machine learning, data mining, big data analytics, high-performance computing network performance analysis, Internet of things networks, wireless sensor networks, and others. The book offers a valuable asset for researchers from both academia and industries involved in advanced studies.
Encyclopedia of Computer Science and Technology
Author: Phillip A. Laplante
Publisher: CRC Press
ISBN: 135164579X
Category : Computers
Languages : en
Pages : 1966
Book Description
With breadth and depth of coverage, the Encyclopedia of Computer Science and Technology, Second Edition has a multi-disciplinary scope, drawing together comprehensive coverage of the inter-related aspects of computer science and technology. The topics covered in this encyclopedia include: General and reference Hardware Computer systems organization Networks Software and its engineering Theory of computation Mathematics of computing Information systems Security and privacy Human-centered computing Computing methodologies Applied computing Professional issues Leading figures in the history of computer science The encyclopedia is structured according to the ACM Computing Classification System (CCS), first published in 1988 but subsequently revised in 2012. This classification system is the most comprehensive and is considered the de facto ontological framework for the computing field. The encyclopedia brings together the information and historical context that students, practicing professionals, researchers, and academicians need to have a strong and solid foundation in all aspects of computer science and technology.
Publisher: CRC Press
ISBN: 135164579X
Category : Computers
Languages : en
Pages : 1966
Book Description
With breadth and depth of coverage, the Encyclopedia of Computer Science and Technology, Second Edition has a multi-disciplinary scope, drawing together comprehensive coverage of the inter-related aspects of computer science and technology. The topics covered in this encyclopedia include: General and reference Hardware Computer systems organization Networks Software and its engineering Theory of computation Mathematics of computing Information systems Security and privacy Human-centered computing Computing methodologies Applied computing Professional issues Leading figures in the history of computer science The encyclopedia is structured according to the ACM Computing Classification System (CCS), first published in 1988 but subsequently revised in 2012. This classification system is the most comprehensive and is considered the de facto ontological framework for the computing field. The encyclopedia brings together the information and historical context that students, practicing professionals, researchers, and academicians need to have a strong and solid foundation in all aspects of computer science and technology.
Advanced Visual Interfaces. Supporting Artificial Intelligence and Big Data Applications
Author: Thoralf Reis
Publisher: Springer Nature
ISBN: 303068007X
Category : Computers
Languages : en
Pages : 213
Book Description
This book constitutes the thoroughly refereed post-workshop proceedings of the AVI 2020 Workshop on Road Mapping Infrastructures for Artificial Intelligence Supporting Advanced Visual Big Data Analysis, AVI-BDA 2020, held in Ischia, Italy, in June 2020, and the Second Italian Workshop on Visualization and Visual Analytics, held in Ischia, Italy, in September 2020. The 14 regular papers in this volume present topics such as big data collection, management and curation; big data analytics; big data interaction and perception; big data insight and effectuation; configuration and management of big data storage and compute infrastructures, services, and tools; advanced visual interaction in big data applications; user empowerment and meta design in big data applications; prediction and automation of big data analysis workflows; as well as data visualization; information visualization; visual analytics; infographics; and design.
Publisher: Springer Nature
ISBN: 303068007X
Category : Computers
Languages : en
Pages : 213
Book Description
This book constitutes the thoroughly refereed post-workshop proceedings of the AVI 2020 Workshop on Road Mapping Infrastructures for Artificial Intelligence Supporting Advanced Visual Big Data Analysis, AVI-BDA 2020, held in Ischia, Italy, in June 2020, and the Second Italian Workshop on Visualization and Visual Analytics, held in Ischia, Italy, in September 2020. The 14 regular papers in this volume present topics such as big data collection, management and curation; big data analytics; big data interaction and perception; big data insight and effectuation; configuration and management of big data storage and compute infrastructures, services, and tools; advanced visual interaction in big data applications; user empowerment and meta design in big data applications; prediction and automation of big data analysis workflows; as well as data visualization; information visualization; visual analytics; infographics; and design.
Knowledge Management in the Development of Data-Intensive Systems
Author: Ivan Mistrik
Publisher: CRC Press
ISBN: 1000387410
Category : Computers
Languages : en
Pages : 342
Book Description
Data-intensive systems are software applications that process and generate Big Data. Data-intensive systems support the use of large amounts of data strategically and efficiently to provide intelligence. For example, examining industrial sensor data or business process data can enhance production, guide proactive improvements of development processes, or optimize supply chain systems. Designing data-intensive software systems is difficult because distribution of knowledge across stakeholders creates a symmetry of ignorance, because a shared vision of the future requires the development of new knowledge that extends and synthesizes existing knowledge. Knowledge Management in the Development of Data-Intensive Systems addresses new challenges arising from knowledge management in the development of data-intensive software systems. These challenges concern requirements, architectural design, detailed design, implementation and maintenance. The book covers the current state and future directions of knowledge management in development of data-intensive software systems. The book features both academic and industrial contributions which discuss the role software engineering can play for addressing challenges that confront developing, maintaining and evolving systems;data-intensive software systems of cloud and mobile services; and the scalability requirements they imply. The book features software engineering approaches that can efficiently deal with data-intensive systems as well as applications and use cases benefiting from data-intensive systems. Providing a comprehensive reference on the notion of data-intensive systems from a technical and non-technical perspective, the book focuses uniquely on software engineering and knowledge management in the design and maintenance of data-intensive systems. The book covers constructing, deploying, and maintaining high quality software products and software engineering in and for dynamic and flexible environments. This book provides a holistic guide for those who need to understand the impact of variability on all aspects of the software life cycle. It leverages practical experience and evidence to look ahead at the challenges faced by organizations in a fast-moving world with increasingly fast-changing customer requirements and expectations.
Publisher: CRC Press
ISBN: 1000387410
Category : Computers
Languages : en
Pages : 342
Book Description
Data-intensive systems are software applications that process and generate Big Data. Data-intensive systems support the use of large amounts of data strategically and efficiently to provide intelligence. For example, examining industrial sensor data or business process data can enhance production, guide proactive improvements of development processes, or optimize supply chain systems. Designing data-intensive software systems is difficult because distribution of knowledge across stakeholders creates a symmetry of ignorance, because a shared vision of the future requires the development of new knowledge that extends and synthesizes existing knowledge. Knowledge Management in the Development of Data-Intensive Systems addresses new challenges arising from knowledge management in the development of data-intensive software systems. These challenges concern requirements, architectural design, detailed design, implementation and maintenance. The book covers the current state and future directions of knowledge management in development of data-intensive software systems. The book features both academic and industrial contributions which discuss the role software engineering can play for addressing challenges that confront developing, maintaining and evolving systems;data-intensive software systems of cloud and mobile services; and the scalability requirements they imply. The book features software engineering approaches that can efficiently deal with data-intensive systems as well as applications and use cases benefiting from data-intensive systems. Providing a comprehensive reference on the notion of data-intensive systems from a technical and non-technical perspective, the book focuses uniquely on software engineering and knowledge management in the design and maintenance of data-intensive systems. The book covers constructing, deploying, and maintaining high quality software products and software engineering in and for dynamic and flexible environments. This book provides a holistic guide for those who need to understand the impact of variability on all aspects of the software life cycle. It leverages practical experience and evidence to look ahead at the challenges faced by organizations in a fast-moving world with increasingly fast-changing customer requirements and expectations.
Machine Learning for Health Informatics
Author: Andreas Holzinger
Publisher: Springer
ISBN: 3319504789
Category : Computers
Languages : en
Pages : 503
Book Description
Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization. Tackling complex challenges needs both disciplinary excellence and cross-disciplinary networking without any boundaries. Following the HCI-KDD approach, in combining the best of two worlds, it is aimed to support human intelligence with machine intelligence. This state-of-the-art survey is an output of the international HCI-KDD expert network and features 22 carefully selected and peer-reviewed chapters on hot topics in machine learning for health informatics; they discuss open problems and future challenges in order to stimulate further research and international progress in this field.
Publisher: Springer
ISBN: 3319504789
Category : Computers
Languages : en
Pages : 503
Book Description
Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization. Tackling complex challenges needs both disciplinary excellence and cross-disciplinary networking without any boundaries. Following the HCI-KDD approach, in combining the best of two worlds, it is aimed to support human intelligence with machine intelligence. This state-of-the-art survey is an output of the international HCI-KDD expert network and features 22 carefully selected and peer-reviewed chapters on hot topics in machine learning for health informatics; they discuss open problems and future challenges in order to stimulate further research and international progress in this field.