Author: Hemachandran K.
Publisher: Bentham Science Publishers
ISBN: 9815165747
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
Artificial Intelligence and Knowledge Processing: Methods and Applications demonstrates the transformative power of Artificial Intelligence (AI) in our lives. The book is a collection of 14 edited reviews that cover a wide range of topics showcasing the application of AI and machine learning to create knowledge, and facilitate different processes. The book starts by illuminating how AI is employed in robotics, IoT, marketing, and operations. It showcases how AI extracts insights from big data, optimizes museum management, and empowers automated garden path planning using reinforcement learning. The book also explores how AI can be used to predict heart disease using artificial neural networks. Furthermore, the book underscores how AI predicts crop suitability, manages crop systems, and can even help to detect violence in using computer vision. Chapters highlight specific techniques or systems such as recommendation systems and reinforcement learning where appropriate. Key Features: · Showcases a wide range of AI applications · Bridges theory and practice with real-word insights · Uses accessible language to explain complex AI concepts · Includes references for advanced readers This book is intended as a guide for a broad range of readers who want to learn about AI applications and the profound influence it has on our lives.
Artificial Intelligence and Knowledge Processing: Methods and Applications
Author: Hemachandran K.
Publisher: Bentham Science Publishers
ISBN: 9815165747
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
Artificial Intelligence and Knowledge Processing: Methods and Applications demonstrates the transformative power of Artificial Intelligence (AI) in our lives. The book is a collection of 14 edited reviews that cover a wide range of topics showcasing the application of AI and machine learning to create knowledge, and facilitate different processes. The book starts by illuminating how AI is employed in robotics, IoT, marketing, and operations. It showcases how AI extracts insights from big data, optimizes museum management, and empowers automated garden path planning using reinforcement learning. The book also explores how AI can be used to predict heart disease using artificial neural networks. Furthermore, the book underscores how AI predicts crop suitability, manages crop systems, and can even help to detect violence in using computer vision. Chapters highlight specific techniques or systems such as recommendation systems and reinforcement learning where appropriate. Key Features: · Showcases a wide range of AI applications · Bridges theory and practice with real-word insights · Uses accessible language to explain complex AI concepts · Includes references for advanced readers This book is intended as a guide for a broad range of readers who want to learn about AI applications and the profound influence it has on our lives.
Publisher: Bentham Science Publishers
ISBN: 9815165747
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
Artificial Intelligence and Knowledge Processing: Methods and Applications demonstrates the transformative power of Artificial Intelligence (AI) in our lives. The book is a collection of 14 edited reviews that cover a wide range of topics showcasing the application of AI and machine learning to create knowledge, and facilitate different processes. The book starts by illuminating how AI is employed in robotics, IoT, marketing, and operations. It showcases how AI extracts insights from big data, optimizes museum management, and empowers automated garden path planning using reinforcement learning. The book also explores how AI can be used to predict heart disease using artificial neural networks. Furthermore, the book underscores how AI predicts crop suitability, manages crop systems, and can even help to detect violence in using computer vision. Chapters highlight specific techniques or systems such as recommendation systems and reinforcement learning where appropriate. Key Features: · Showcases a wide range of AI applications · Bridges theory and practice with real-word insights · Uses accessible language to explain complex AI concepts · Includes references for advanced readers This book is intended as a guide for a broad range of readers who want to learn about AI applications and the profound influence it has on our lives.
Economic Modeling Using Artificial Intelligence Methods
Author: Tshilidzi Marwala
Publisher: Springer Science & Business Media
ISBN: 1447150104
Category : Computers
Languages : en
Pages : 271
Book Description
Economic Modeling Using Artificial Intelligence Methods examines the application of artificial intelligence methods to model economic data. Traditionally, economic modeling has been modeled in the linear domain where the principles of superposition are valid. The application of artificial intelligence for economic modeling allows for a flexible multi-order non-linear modeling. In addition, game theory has largely been applied in economic modeling. However, the inherent limitation of game theory when dealing with many player games encourages the use of multi-agent systems for modeling economic phenomena. The artificial intelligence techniques used to model economic data include: multi-layer perceptron neural networks radial basis functions support vector machines rough sets genetic algorithm particle swarm optimization simulated annealing multi-agent system incremental learning fuzzy networks Signal processing techniques are explored to analyze economic data, and these techniques are the time domain methods, time-frequency domain methods and fractals dimension approaches. Interesting economic problems such as causality versus correlation, simulating the stock market, modeling and controling inflation, option pricing, modeling economic growth as well as portfolio optimization are examined. The relationship between economic dependency and interstate conflict is explored, and knowledge on how economics is useful to foster peace – and vice versa – is investigated. Economic Modeling Using Artificial Intelligence Methods deals with the issue of causality in the non-linear domain and applies the automatic relevance determination, the evidence framework, Bayesian approach and Granger causality to understand causality and correlation. Economic Modeling Using Artificial Intelligence Methods makes an important contribution to the area of econometrics, and is a valuable source of reference for graduate students, researchers and financial practitioners.
Publisher: Springer Science & Business Media
ISBN: 1447150104
Category : Computers
Languages : en
Pages : 271
Book Description
Economic Modeling Using Artificial Intelligence Methods examines the application of artificial intelligence methods to model economic data. Traditionally, economic modeling has been modeled in the linear domain where the principles of superposition are valid. The application of artificial intelligence for economic modeling allows for a flexible multi-order non-linear modeling. In addition, game theory has largely been applied in economic modeling. However, the inherent limitation of game theory when dealing with many player games encourages the use of multi-agent systems for modeling economic phenomena. The artificial intelligence techniques used to model economic data include: multi-layer perceptron neural networks radial basis functions support vector machines rough sets genetic algorithm particle swarm optimization simulated annealing multi-agent system incremental learning fuzzy networks Signal processing techniques are explored to analyze economic data, and these techniques are the time domain methods, time-frequency domain methods and fractals dimension approaches. Interesting economic problems such as causality versus correlation, simulating the stock market, modeling and controling inflation, option pricing, modeling economic growth as well as portfolio optimization are examined. The relationship between economic dependency and interstate conflict is explored, and knowledge on how economics is useful to foster peace – and vice versa – is investigated. Economic Modeling Using Artificial Intelligence Methods deals with the issue of causality in the non-linear domain and applies the automatic relevance determination, the evidence framework, Bayesian approach and Granger causality to understand causality and correlation. Economic Modeling Using Artificial Intelligence Methods makes an important contribution to the area of econometrics, and is a valuable source of reference for graduate students, researchers and financial practitioners.
Machine Learning and Data Mining for Computer Security
Author: Marcus A. Maloof
Publisher: Springer Science & Business Media
ISBN: 1846282535
Category : Computers
Languages : en
Pages : 218
Book Description
"Machine Learning and Data Mining for Computer Security" provides an overview of the current state of research in machine learning and data mining as it applies to problems in computer security. This book has a strong focus on information processing and combines and extends results from computer security. The first part of the book surveys the data sources, the learning and mining methods, evaluation methodologies, and past work relevant for computer security. The second part of the book consists of articles written by the top researchers working in this area. These articles deals with topics of host-based intrusion detection through the analysis of audit trails, of command sequences and of system calls as well as network intrusion detection through the analysis of TCP packets and the detection of malicious executables. This book fills the great need for a book that collects and frames work on developing and applying methods from machine learning and data mining to problems in computer security.
Publisher: Springer Science & Business Media
ISBN: 1846282535
Category : Computers
Languages : en
Pages : 218
Book Description
"Machine Learning and Data Mining for Computer Security" provides an overview of the current state of research in machine learning and data mining as it applies to problems in computer security. This book has a strong focus on information processing and combines and extends results from computer security. The first part of the book surveys the data sources, the learning and mining methods, evaluation methodologies, and past work relevant for computer security. The second part of the book consists of articles written by the top researchers working in this area. These articles deals with topics of host-based intrusion detection through the analysis of audit trails, of command sequences and of system calls as well as network intrusion detection through the analysis of TCP packets and the detection of malicious executables. This book fills the great need for a book that collects and frames work on developing and applying methods from machine learning and data mining to problems in computer security.
Machine Learning for Audio, Image and Video Analysis
Author: Francesco Camastra
Publisher: Springer
ISBN: 144716735X
Category : Computers
Languages : en
Pages : 564
Book Description
This second edition focuses on audio, image and video data, the three main types of input that machines deal with when interacting with the real world. A set of appendices provides the reader with self-contained introductions to the mathematical background necessary to read the book. Divided into three main parts, From Perception to Computation introduces methodologies aimed at representing the data in forms suitable for computer processing, especially when it comes to audio and images. Whilst the second part, Machine Learning includes an extensive overview of statistical techniques aimed at addressing three main problems, namely classification (automatically assigning a data sample to one of the classes belonging to a predefined set), clustering (automatically grouping data samples according to the similarity of their properties) and sequence analysis (automatically mapping a sequence of observations into a sequence of human-understandable symbols). The third part Applications shows how the abstract problems defined in the second part underlie technologies capable to perform complex tasks such as the recognition of hand gestures or the transcription of handwritten data. Machine Learning for Audio, Image and Video Analysis is suitable for students to acquire a solid background in machine learning as well as for practitioners to deepen their knowledge of the state-of-the-art. All application chapters are based on publicly available data and free software packages, thus allowing readers to replicate the experiments.
Publisher: Springer
ISBN: 144716735X
Category : Computers
Languages : en
Pages : 564
Book Description
This second edition focuses on audio, image and video data, the three main types of input that machines deal with when interacting with the real world. A set of appendices provides the reader with self-contained introductions to the mathematical background necessary to read the book. Divided into three main parts, From Perception to Computation introduces methodologies aimed at representing the data in forms suitable for computer processing, especially when it comes to audio and images. Whilst the second part, Machine Learning includes an extensive overview of statistical techniques aimed at addressing three main problems, namely classification (automatically assigning a data sample to one of the classes belonging to a predefined set), clustering (automatically grouping data samples according to the similarity of their properties) and sequence analysis (automatically mapping a sequence of observations into a sequence of human-understandable symbols). The third part Applications shows how the abstract problems defined in the second part underlie technologies capable to perform complex tasks such as the recognition of hand gestures or the transcription of handwritten data. Machine Learning for Audio, Image and Video Analysis is suitable for students to acquire a solid background in machine learning as well as for practitioners to deepen their knowledge of the state-of-the-art. All application chapters are based on publicly available data and free software packages, thus allowing readers to replicate the experiments.
Machine Learning and Its Applications
Author: PETER. WLODARCZAK
Publisher: CRC Press
ISBN: 9781032086774
Category :
Languages : en
Pages : 188
Book Description
In recent years, machine learning has gained a lot of interest. Due to the advances in processor technology and the availability of large amounts of data, machine learning techniques have provided astounding results in areas such as object recognition or natural language processing. New approaches, e.g. deep learning, have provided groundbreaking outcomes in fields such as multimedia mining or voice recognition. Machine learning is now used in virtually every domain and deep learning algorithms are present in many devices such as smartphones, cars, drones, healthcare equipment, or smart home devices. The Internet, cloud computing and the Internet of Things produce a tsunami of data and machine learning provides the methods to effectively analyze the data and discover actionable knowledge. This book describes the most common machine learning techniques such as Bayesian models, support vector machines, decision tree induction, regression analysis, and recurrent and convolutional neural networks. It first gives an introduction into the principles of machine learning. It then covers the basic methods including the mathematical foundations. The biggest part of the book provides common machine learning algorithms and their applications. Finally, the book gives an outlook into some of the future developments and possible new research areas of machine learning and artificial intelligence in general. This book is meant to be an introduction into machine learning. It does not require prior knowledge in this area. It covers some of the basic mathematical principle but intends to be understandable even without a background in mathematics. It can be read chapter wise and intends to be comprehensible, even when not starting in the beginning. Finally, it also intends to be a reference book. Key Features: Describes real world problems that can be solved using Machine Learning Provides methods for directly applying Machine Learning techniques to concrete real world problems Demonstrates how to apply Machine Learning techniques using different frameworks such as TensorFlow, MALLET, R
Publisher: CRC Press
ISBN: 9781032086774
Category :
Languages : en
Pages : 188
Book Description
In recent years, machine learning has gained a lot of interest. Due to the advances in processor technology and the availability of large amounts of data, machine learning techniques have provided astounding results in areas such as object recognition or natural language processing. New approaches, e.g. deep learning, have provided groundbreaking outcomes in fields such as multimedia mining or voice recognition. Machine learning is now used in virtually every domain and deep learning algorithms are present in many devices such as smartphones, cars, drones, healthcare equipment, or smart home devices. The Internet, cloud computing and the Internet of Things produce a tsunami of data and machine learning provides the methods to effectively analyze the data and discover actionable knowledge. This book describes the most common machine learning techniques such as Bayesian models, support vector machines, decision tree induction, regression analysis, and recurrent and convolutional neural networks. It first gives an introduction into the principles of machine learning. It then covers the basic methods including the mathematical foundations. The biggest part of the book provides common machine learning algorithms and their applications. Finally, the book gives an outlook into some of the future developments and possible new research areas of machine learning and artificial intelligence in general. This book is meant to be an introduction into machine learning. It does not require prior knowledge in this area. It covers some of the basic mathematical principle but intends to be understandable even without a background in mathematics. It can be read chapter wise and intends to be comprehensible, even when not starting in the beginning. Finally, it also intends to be a reference book. Key Features: Describes real world problems that can be solved using Machine Learning Provides methods for directly applying Machine Learning techniques to concrete real world problems Demonstrates how to apply Machine Learning techniques using different frameworks such as TensorFlow, MALLET, R
Knowledge Computing and Its Applications
Author: S. Margret Anouncia
Publisher: Springer
ISBN: 9811066809
Category : Computers
Languages : en
Pages : 303
Book Description
This book provides a major forum for the technical advancement of knowledge management and its applications across diversified domains. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, data mining, recommender systems, image processing, pattern recognition and predictions using machine learning techniques is the major strength of this book. Effective knowledge management has become a key to the success of business organizations, and can offer a substantial competitive edge. So as to be accessible to all scholars, this book combines the core ideas of knowledge management and its applications in numerous domains, illustrated in case studies. The techniques and concepts proposed here can be extended in future to accommodate changing business organizations’ needs as well as practitioners’ innovative ideas.
Publisher: Springer
ISBN: 9811066809
Category : Computers
Languages : en
Pages : 303
Book Description
This book provides a major forum for the technical advancement of knowledge management and its applications across diversified domains. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, data mining, recommender systems, image processing, pattern recognition and predictions using machine learning techniques is the major strength of this book. Effective knowledge management has become a key to the success of business organizations, and can offer a substantial competitive edge. So as to be accessible to all scholars, this book combines the core ideas of knowledge management and its applications in numerous domains, illustrated in case studies. The techniques and concepts proposed here can be extended in future to accommodate changing business organizations’ needs as well as practitioners’ innovative ideas.
Artificial Intelligence in Healthcare
Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385
Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385
Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Artificial Intelligence Methods And Applications
Author: Nikolas G Bourbakis
Publisher: World Scientific
ISBN: 9814505293
Category : Computers
Languages : en
Pages : 740
Book Description
This volume is the first in a series which deals with the challenge of AI issues, gives updates of AI methods and applications, and promotes high quality new ideas, techniques and methodologies in AI. This volume contains articles by 38 specialists in various AI subfields covering theoretical and application issues.
Publisher: World Scientific
ISBN: 9814505293
Category : Computers
Languages : en
Pages : 740
Book Description
This volume is the first in a series which deals with the challenge of AI issues, gives updates of AI methods and applications, and promotes high quality new ideas, techniques and methodologies in AI. This volume contains articles by 38 specialists in various AI subfields covering theoretical and application issues.
Artificial Intelligence and Knowledge Processing
Author: Hemachandran K
Publisher: Springer Nature
ISBN: 3031686179
Category :
Languages : en
Pages : 417
Book Description
Publisher: Springer Nature
ISBN: 3031686179
Category :
Languages : en
Pages : 417
Book Description
Knowledge Graphs
Author: Mayank Kejriwal
Publisher: MIT Press
ISBN: 0262045095
Category : Computers
Languages : en
Pages : 559
Book Description
A rigorous and comprehensive textbook covering the major approaches to knowledge graphs, an active and interdisciplinary area within artificial intelligence. The field of knowledge graphs, which allows us to model, process, and derive insights from complex real-world data, has emerged as an active and interdisciplinary area of artificial intelligence over the last decade, drawing on such fields as natural language processing, data mining, and the semantic web. Current projects involve predicting cyberattacks, recommending products, and even gleaning insights from thousands of papers on COVID-19. This textbook offers rigorous and comprehensive coverage of the field. It focuses systematically on the major approaches, both those that have stood the test of time and the latest deep learning methods.
Publisher: MIT Press
ISBN: 0262045095
Category : Computers
Languages : en
Pages : 559
Book Description
A rigorous and comprehensive textbook covering the major approaches to knowledge graphs, an active and interdisciplinary area within artificial intelligence. The field of knowledge graphs, which allows us to model, process, and derive insights from complex real-world data, has emerged as an active and interdisciplinary area of artificial intelligence over the last decade, drawing on such fields as natural language processing, data mining, and the semantic web. Current projects involve predicting cyberattacks, recommending products, and even gleaning insights from thousands of papers on COVID-19. This textbook offers rigorous and comprehensive coverage of the field. It focuses systematically on the major approaches, both those that have stood the test of time and the latest deep learning methods.