Artificial Intelligence and Knowledge Processing

Artificial Intelligence and Knowledge Processing PDF Author: Hemachandran K
Publisher: CRC Press
ISBN: 1000934624
Category : Technology & Engineering
Languages : en
Pages : 372

Get Book Here

Book Description
Artificial Intelligence and Knowledge Processing play a vital role in various automation industries and their functioning in converting traditional industries to AI-based factories. This book acts as a guide and blends the basics of Artificial Intelligence in various domains, which include Machine Learning, Deep Learning, Artificial Neural Networks, and Expert Systems, and extends their application in all sectors. Artificial Intelligence and Knowledge Processing: Improved Decision-Making and Prediction, discusses the designing of new AI algorithms used to convert general applications to AI-based applications. It highlights different Machine Learning and Deep Learning models for various applications used in healthcare and wellness, agriculture, and automobiles. The book offers an overview of the rapidly growing and developing field of AI applications, along with Knowledge of Engineering, and Business Analytics. Real-time case studies are included across several different fields such as Image Processing, Text Mining, Healthcare, Finance, Digital Marketing, and HR Analytics. The book also introduces a statistical background and probabilistic framework to enhance the understanding of continuous distributions. Topics such as Ensemble Models, Deep Learning Models, Artificial Neural Networks, Expert Systems, and Decision-Based Systems round out the offerings of this book. This multi-contributed book is a valuable source for researchers, academics, technologists, industrialists, practitioners, and all those who wish to explore the applications of AI, Knowledge Processing, Deep Learning, and Machine Learning.

Artificial Intelligence and Knowledge Processing

Artificial Intelligence and Knowledge Processing PDF Author: Hemachandran K
Publisher: CRC Press
ISBN: 1000934624
Category : Technology & Engineering
Languages : en
Pages : 372

Get Book Here

Book Description
Artificial Intelligence and Knowledge Processing play a vital role in various automation industries and their functioning in converting traditional industries to AI-based factories. This book acts as a guide and blends the basics of Artificial Intelligence in various domains, which include Machine Learning, Deep Learning, Artificial Neural Networks, and Expert Systems, and extends their application in all sectors. Artificial Intelligence and Knowledge Processing: Improved Decision-Making and Prediction, discusses the designing of new AI algorithms used to convert general applications to AI-based applications. It highlights different Machine Learning and Deep Learning models for various applications used in healthcare and wellness, agriculture, and automobiles. The book offers an overview of the rapidly growing and developing field of AI applications, along with Knowledge of Engineering, and Business Analytics. Real-time case studies are included across several different fields such as Image Processing, Text Mining, Healthcare, Finance, Digital Marketing, and HR Analytics. The book also introduces a statistical background and probabilistic framework to enhance the understanding of continuous distributions. Topics such as Ensemble Models, Deep Learning Models, Artificial Neural Networks, Expert Systems, and Decision-Based Systems round out the offerings of this book. This multi-contributed book is a valuable source for researchers, academics, technologists, industrialists, practitioners, and all those who wish to explore the applications of AI, Knowledge Processing, Deep Learning, and Machine Learning.

Natural Language Processing and Knowledge Representation

Natural Language Processing and Knowledge Representation PDF Author: Łucja M. Iwańska
Publisher: AAAI Press
ISBN:
Category : Computers
Languages : en
Pages : 490

Get Book Here

Book Description
"Traditionally, knowledge representation and reasoning systems have incorporated natural language as interfaces to expert systems or knowledge bases that performed tasks separate from natural language processing. As this book shows, however, the computational nature of representation and inference in natural language makes it the ideal model for all tasks in an intelligent computer system. Natural language processing combines the qualitative characteristics of human knowledge processing with a computer's quantitative advantages, allowing for in-depth, systematic processing of vast amounts of information.

Artificial Intelligence for Knowledge Management

Artificial Intelligence for Knowledge Management PDF Author: Eunika Mercier-Laurent
Publisher: Springer Nature
ISBN: 3030808475
Category : Computers
Languages : en
Pages : 262

Get Book Here

Book Description
This book features a selection of extended papers presented at the 8th IFIP WG 12.6 International Workshop on Artificial Intelligence for Knowledge Management, AI4KM 2021, held in Yokohama, Japan, in January 2021, in the framework of the International Joint Conference on Artificial Intelligence, IJCAI 2020.* The 14 revised and extended papers presented together with an invited talk were carefully reviewed and selected for inclusion in this volume. They present new research and innovative aspects in the field of knowledge management and discuss methodological, technical and organizational aspects of artificial intelligence used for knowledge management. *The workshop was held virtually.

Knowledge Representation

Knowledge Representation PDF Author: T.J.M. Bench-Capon
Publisher: Elsevier
ISBN: 1483297101
Category : Computers
Languages : en
Pages : 236

Get Book Here

Book Description
Although many texts exist offering an introduction to artificial intelligence (AI), this book is unique in that it places an emphasis on knowledge representation (KR) concepts. It includes small-scale implementations in PROLOG to illustrate the major KR paradigms and their developments.****back cover copy:**Knowledge representation is at the heart of the artificial intelligence enterprise: anyone writing a program which seeks to work by encoding and manipulating knowledge needs to pay attention to the scheme whereby he will represent the knowledge, and to be aware of the consequences of the choices made.****The book's distinctive approach introduces the topic of AI through a study of knowledge representation issues. It assumes a basic knowledge of computing and a familiarity with the principles of elementary formal logic would be advantageous.****Knowledge Representation: An Approach to Artificial Intelligence develops from an introductory consideration of AI, knowledge representation and logic, through search technique to the three central knowledge paradigms: production rules, structured objects, and predicate calculus. The final section of the book illustrates the application of these knowledge representation paradigms through the Prolog Programming language and with an examination of diverse expert systems applications. The book concludes with a look at some advanced issues in knowledge representation.****This text provides an introduction to AI through a study of knowledge representation and each chapter contains exercises for students. Experienced computer scientists and students alike, seeking an introduction to AI and knowledge representations will find this an invaluable text.

Knowledge Processing and Applied Artificial Intelligence

Knowledge Processing and Applied Artificial Intelligence PDF Author: Soumitra Dutta
Publisher: Elsevier
ISBN: 1483183920
Category : Computers
Languages : en
Pages : 369

Get Book Here

Book Description
Knowledge Processing and Applied Artificial Intelligence discusses the business potential of knowledge processing and examines the aspects of applied artificial intelligence technology. The book is comprised of nine chapters that are organized into five parts. The text first covers knowledge processing and applied artificial intelligence, and then proceeds to tackling the techniques for acquiring, representing, and reasoning with knowledge. The next part deals with the process of creating and implementing strategically advantageous knowledge-based system applications. The fourth part covers intelligent interfaces, while the last part details alternative approaches to knowledge processing. The book will be of great use to students and professionals of computer or business related disciplines.

Machine Learning and Data Mining for Computer Security

Machine Learning and Data Mining for Computer Security PDF Author: Marcus A. Maloof
Publisher: Springer Science & Business Media
ISBN: 1846282535
Category : Computers
Languages : en
Pages : 218

Get Book Here

Book Description
"Machine Learning and Data Mining for Computer Security" provides an overview of the current state of research in machine learning and data mining as it applies to problems in computer security. This book has a strong focus on information processing and combines and extends results from computer security. The first part of the book surveys the data sources, the learning and mining methods, evaluation methodologies, and past work relevant for computer security. The second part of the book consists of articles written by the top researchers working in this area. These articles deals with topics of host-based intrusion detection through the analysis of audit trails, of command sequences and of system calls as well as network intrusion detection through the analysis of TCP packets and the detection of malicious executables. This book fills the great need for a book that collects and frames work on developing and applying methods from machine learning and data mining to problems in computer security.

Economic Modeling Using Artificial Intelligence Methods

Economic Modeling Using Artificial Intelligence Methods PDF Author: Tshilidzi Marwala
Publisher: Springer Science & Business Media
ISBN: 1447150104
Category : Computers
Languages : en
Pages : 271

Get Book Here

Book Description
Economic Modeling Using Artificial Intelligence Methods examines the application of artificial intelligence methods to model economic data. Traditionally, economic modeling has been modeled in the linear domain where the principles of superposition are valid. The application of artificial intelligence for economic modeling allows for a flexible multi-order non-linear modeling. In addition, game theory has largely been applied in economic modeling. However, the inherent limitation of game theory when dealing with many player games encourages the use of multi-agent systems for modeling economic phenomena. The artificial intelligence techniques used to model economic data include: multi-layer perceptron neural networks radial basis functions support vector machines rough sets genetic algorithm particle swarm optimization simulated annealing multi-agent system incremental learning fuzzy networks Signal processing techniques are explored to analyze economic data, and these techniques are the time domain methods, time-frequency domain methods and fractals dimension approaches. Interesting economic problems such as causality versus correlation, simulating the stock market, modeling and controling inflation, option pricing, modeling economic growth as well as portfolio optimization are examined. The relationship between economic dependency and interstate conflict is explored, and knowledge on how economics is useful to foster peace – and vice versa – is investigated. Economic Modeling Using Artificial Intelligence Methods deals with the issue of causality in the non-linear domain and applies the automatic relevance determination, the evidence framework, Bayesian approach and Granger causality to understand causality and correlation. Economic Modeling Using Artificial Intelligence Methods makes an important contribution to the area of econometrics, and is a valuable source of reference for graduate students, researchers and financial practitioners.

Artificial Intelligence and Economic Theory: Skynet in the Market

Artificial Intelligence and Economic Theory: Skynet in the Market PDF Author: Tshilidzi Marwala
Publisher: Springer
ISBN: 3319661043
Category : Computers
Languages : en
Pages : 206

Get Book Here

Book Description
This book theoretically and practically updates major economic ideas such as demand and supply, rational choice and expectations, bounded rationality, behavioral economics, information asymmetry, pricing, efficient market hypothesis, game theory, mechanism design, portfolio theory, causality and financial engineering in the age of significant advances in man-machine systems. The advent of artificial intelligence has changed many disciplines such as engineering, social science and economics. Artificial intelligence is a computational technique which is inspired by natural intelligence concepts such as the swarming of birds, the working of the brain and the pathfinding of the ants. Artificial Intelligence and Economic Theory: Skynet in the Market analyses the impact of artificial intelligence on economic theories, a subject that has not been studied. It also introduces new economic theories and these are rational counterfactuals and rational opportunity costs. These ideas are applied to diverse areas such as modelling of the stock market, credit scoring, HIV and interstate conflict. Artificial intelligence ideas used in this book include neural networks, particle swarm optimization, simulated annealing, fuzzy logic and genetic algorithms. It, furthermore, explores ideas in causality including Granger as well as the Pearl causality models.

Machine Learning for Audio, Image and Video Analysis

Machine Learning for Audio, Image and Video Analysis PDF Author: Francesco Camastra
Publisher: Springer
ISBN: 144716735X
Category : Computers
Languages : en
Pages : 564

Get Book Here

Book Description
This second edition focuses on audio, image and video data, the three main types of input that machines deal with when interacting with the real world. A set of appendices provides the reader with self-contained introductions to the mathematical background necessary to read the book. Divided into three main parts, From Perception to Computation introduces methodologies aimed at representing the data in forms suitable for computer processing, especially when it comes to audio and images. Whilst the second part, Machine Learning includes an extensive overview of statistical techniques aimed at addressing three main problems, namely classification (automatically assigning a data sample to one of the classes belonging to a predefined set), clustering (automatically grouping data samples according to the similarity of their properties) and sequence analysis (automatically mapping a sequence of observations into a sequence of human-understandable symbols). The third part Applications shows how the abstract problems defined in the second part underlie technologies capable to perform complex tasks such as the recognition of hand gestures or the transcription of handwritten data. Machine Learning for Audio, Image and Video Analysis is suitable for students to acquire a solid background in machine learning as well as for practitioners to deepen their knowledge of the state-of-the-art. All application chapters are based on publicly available data and free software packages, thus allowing readers to replicate the experiments.

Knowledge Graphs and Big Data Processing

Knowledge Graphs and Big Data Processing PDF Author: Valentina Janev
Publisher: Springer Nature
ISBN: 3030531996
Category : Computers
Languages : en
Pages : 212

Get Book Here

Book Description
This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.