Artificial Intelligence and Actuarial Science

Artificial Intelligence and Actuarial Science PDF Author: Sonal Trivedi
Publisher: CRC Press
ISBN: 1040270425
Category : Computers
Languages : en
Pages : 238

Get Book Here

Book Description
This book aims to explore how to automate, innovate, design, and deploy emerging technologies in actuarial work transformations for the insurance and finance sector. It examines the role of artificial intelligence with process automation in daily monitoring of solvency, governance, compliance, data processes, etc. It also explores the usage of machine learning, telematics system, AI-enabled claim processing software, Big Data and Algorithms, Explainable AI, and AI-enabled risk management tools in various actuarial processes. This book: • Presents case studies and best practices with real-world examples of successful and unsuccessful actuarial work transformation initiatives and transformation with emerging technologies • Offers deployment solutions for different applications of AI in actuarial work • Discusses how organizations can effectively incorporate AI into their current practices of actuarial work • Covers diverse emerging technologies, practices, and processes of actuaries from around the globe • Elaborates upon a framework for comprehending how big data and AI developments may affect insurance offers and their supervision • Explains how insurance companies may review and modify their current Risk Management Framework (RMF) to take into account some of the significant differences while implementing AI use cases This reference book is for scholars, researchers and professionals interested in Artificial Intelligence and Actuarial Science.

Artificial Intelligence and Actuarial Science

Artificial Intelligence and Actuarial Science PDF Author: Sonal Trivedi
Publisher: CRC Press
ISBN: 1040270425
Category : Computers
Languages : en
Pages : 238

Get Book Here

Book Description
This book aims to explore how to automate, innovate, design, and deploy emerging technologies in actuarial work transformations for the insurance and finance sector. It examines the role of artificial intelligence with process automation in daily monitoring of solvency, governance, compliance, data processes, etc. It also explores the usage of machine learning, telematics system, AI-enabled claim processing software, Big Data and Algorithms, Explainable AI, and AI-enabled risk management tools in various actuarial processes. This book: • Presents case studies and best practices with real-world examples of successful and unsuccessful actuarial work transformation initiatives and transformation with emerging technologies • Offers deployment solutions for different applications of AI in actuarial work • Discusses how organizations can effectively incorporate AI into their current practices of actuarial work • Covers diverse emerging technologies, practices, and processes of actuaries from around the globe • Elaborates upon a framework for comprehending how big data and AI developments may affect insurance offers and their supervision • Explains how insurance companies may review and modify their current Risk Management Framework (RMF) to take into account some of the significant differences while implementing AI use cases This reference book is for scholars, researchers and professionals interested in Artificial Intelligence and Actuarial Science.

Predictive Modeling Applications in Actuarial Science

Predictive Modeling Applications in Actuarial Science PDF Author: Edward W. Frees
Publisher: Cambridge University Press
ISBN: 1107029872
Category : Business & Economics
Languages : en
Pages : 565

Get Book Here

Book Description
This book is for actuaries and financial analysts developing their expertise in statistics and who wish to become familiar with concrete examples of predictive modeling.

Effective Statistical Learning Methods for Actuaries II

Effective Statistical Learning Methods for Actuaries II PDF Author: Michel Denuit
Publisher: Springer Nature
ISBN: 303057556X
Category : Business & Economics
Languages : en
Pages : 235

Get Book Here

Book Description
This book summarizes the state of the art in tree-based methods for insurance: regression trees, random forests and boosting methods. It also exhibits the tools which make it possible to assess the predictive performance of tree-based models. Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and numerical illustrations or case studies. All numerical illustrations are performed with the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. In particular, master's students in actuarial sciences and actuaries wishing to update their skills in machine learning will find the book useful. This is the second of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance.

Hire Purpose

Hire Purpose PDF Author: Deanna Mulligan
Publisher: Columbia University Press
ISBN: 0231553129
Category : Business & Economics
Languages : en
Pages : 307

Get Book Here

Book Description
A WALL STREET JOURNAL BUSINESS BESTSELLER The future of work is already here, and what this future looks like must be a pressing concern for the current generation of leaders in both the private and public sectors. In the next ten to fifteen years, rapid change in a post-pandemic world and emerging technology will revolutionize nearly every job, eliminate some, and create new forms of work that we have yet to imagine. How can we survive and thrive in the face of such drastic change? Deanna Mulligan offers a practical, broad-minded look at the effects of workplace evolution and automation and why the private sector needs to lead the charge in shaping a values-based response. With a focus on the power of education, Mulligan proposes that the solutions to workforce upheaval lie in reskilling and retraining for individuals and companies adapting to rapid change. By creating lifelong learning opportunities that break down boundaries between the classroom and the workplace, businesses can foster personal and career well-being and growth for their employees. Drawing on her own experiences, historical examples, and reports from the frontiers where these issues are unfolding, Mulligan details how business leaders can prepare for and respond to technological disruption. Providing a framework for concrete and meaningful action, Hire Purpose is an essential read about the transformations that will shape the next decade and beyond.

The Artificial Intelligence Imperative

The Artificial Intelligence Imperative PDF Author: Anastassia Lauterbach
Publisher: Bloomsbury Publishing USA
ISBN:
Category : Business & Economics
Languages : en
Pages : 240

Get Book Here

Book Description
This practical guide to artificial intelligence and its impact on industry dispels common myths and calls for cross-sector, collaborative leadership for the responsible design and embedding of AI in the daily work of businesses and oversight by boards. Artificial intelligence has arrived, and it's coming to a business near you. The disruptive impact of AI on the global economy—from health care to energy, financial services to agriculture, and defense to media—is enormous. Technology literacy is a must for traditional businesses, their boards, policy makers, and governance professionals. This is the first book to explain where AI comes from, why it has emerged as one of the most powerful forces in mergers and acquisitions and research and development, and what companies need to do to implement it successfully. It equips business leaders with a practical roadmap for competing and even thriving in the face of the coming AI revolution. The authors analyze competitive trends, provide industry and governance examples, and explain interactions between AI and other digital technologies, such as blockchain, cybersecurity, and the Internet of Things. At the same time, AI experts will learn how their research and products can increase the competitiveness of their businesses, and corporate boards will come away with a thorough knowledge of the AI governance, ethics, and risk questions to ask.

Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning

Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning PDF Author: Segall, Richard S.
Publisher: IGI Global
ISBN: 1799884570
Category : Computers
Languages : en
Pages : 394

Get Book Here

Book Description
During these uncertain and turbulent times, intelligent technologies including artificial neural networks (ANN) and machine learning (ML) have played an incredible role in being able to predict, analyze, and navigate unprecedented circumstances across a number of industries, ranging from healthcare to hospitality. Multi-factor prediction in particular has been especially helpful in dealing with the most current pressing issues such as COVID-19 prediction, pneumonia detection, cardiovascular diagnosis and disease management, automobile accident prediction, and vacation rental listing analysis. To date, there has not been much research content readily available in these areas, especially content written extensively from a user perspective. Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning is designed to cover a brief and focused range of essential topics in the field with perspectives, models, and first-hand experiences shared by prominent researchers, discussing applications of artificial neural networks (ANN) and machine learning (ML) for biomedical and business applications and a listing of current open-source software for neural networks, machine learning, and artificial intelligence. It also presents summaries of currently available open source software that utilize neural networks and machine learning. The book is ideal for professionals, researchers, students, and practitioners who want to more fully understand in a brief and concise format the realm and technologies of artificial neural networks (ANN) and machine learning (ML) and how they have been used for prediction of multi-disciplinary research problems in a multitude of disciplines.

Computational Actuarial Science with R

Computational Actuarial Science with R PDF Author: Arthur Charpentier
Publisher: CRC Press
ISBN: 1498759823
Category : Business & Economics
Languages : en
Pages : 652

Get Book Here

Book Description
A Hands-On Approach to Understanding and Using Actuarial ModelsComputational Actuarial Science with R provides an introduction to the computational aspects of actuarial science. Using simple R code, the book helps you understand the algorithms involved in actuarial computations. It also covers more advanced topics, such as parallel computing and C/

Information Systems Design and Intelligent Applications

Information Systems Design and Intelligent Applications PDF Author: Vikrant Bhateja
Publisher: Springer
ISBN: 9811075123
Category : Technology & Engineering
Languages : en
Pages : 1112

Get Book Here

Book Description
The book is a collection of high-quality peer-reviewed research papers presented at International Conference on Information System Design and Intelligent Applications (INDIA 2017) held at Duy Tan University, Da Nang, Vietnam during 15-17 June 2017. The book covers a wide range of topics of computer science and information technology discipline ranging from image processing, database application, data mining, grid and cloud computing, bioinformatics and many others. The various intelligent tools like swarm intelligence, artificial intelligence, evolutionary algorithms, bio-inspired algorithms have been well applied in different domains for solving various challenging problems.

Effective Statistical Learning Methods for Actuaries I

Effective Statistical Learning Methods for Actuaries I PDF Author: Michel Denuit
Publisher:
ISBN: 9783030258214
Category : Actuarial science
Languages : en
Pages : 441

Get Book Here

Book Description
This book summarizes the state of the art in generalized linear models (GLMs) and their various extensions: GAMs, mixed models and credibility, and some nonlinear variants (GNMs). In order to deal with tail events, analytical tools from Extreme Value Theory are presented. Going beyond mean modeling, it considers volatility modeling (double GLMs) and the general modeling of location, scale and shape parameters (GAMLSS). Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and case studies, providing numerical illustrations using the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. This is the first of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P & C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently.

Healthcare Risk Adjustment and Predictive Modeling

Healthcare Risk Adjustment and Predictive Modeling PDF Author: Ian G. Duncan
Publisher: ACTEX Publications
ISBN: 1566987695
Category : Business & Economics
Languages : en
Pages : 350

Get Book Here

Book Description
This text is listed on the Course of Reading for SOA Fellowship study in the Group & Health specialty track. Healthcare Risk Adjustment and Predictive Modeling provides a comprehensive guide to healthcare actuaries and other professionals interested in healthcare data analytics, risk adjustment and predictive modeling. The book first introduces the topic with discussions of health risk, available data, clinical identification algorithms for diagnostic grouping and the use of grouper models. The second part of the book presents the concept of data mining and some of the common approaches used by modelers. The third and final section covers a number of predictive modeling and risk adjustment case-studies, with examples from Medicaid, Medicare, disability, depression diagnosis and provider reimbursement, as well as the use of predictive modeling and risk adjustment outside the U.S. For readers who wish to experiment with their own models, the book also provides access to a test dataset.