Author: Wolfgang Böhm
Publisher: Springer Nature
ISBN: 3030621367
Category : Computers
Languages : en
Pages : 404
Book Description
This Open Access book presents the results of the "Collaborative Embedded Systems" (CrESt) project, aimed at adapting and complementing the methodology underlying modeling techniques developed to cope with the challenges of the dynamic structures of collaborative embedded systems (CESs) based on the SPES development methodology. In order to manage the high complexity of the individual systems and the dynamically formed interaction structures at runtime, advanced and powerful development methods are required that extend the current state of the art in the development of embedded systems and cyber-physical systems. The methodological contributions of the project support the effective and efficient development of CESs in dynamic and uncertain contexts, with special emphasis on the reliability and variability of individual systems and the creation of networks of such systems at runtime. The project was funded by the German Federal Ministry of Education and Research (BMBF), and the case studies are therefore selected from areas that are highly relevant for Germany’s economy (automotive, industrial production, power generation, and robotics). It also supports the digitalization of complex and transformable industrial plants in the context of the German government's "Industry 4.0" initiative, and the project results provide a solid foundation for implementing the German government's high-tech strategy "Innovations for Germany" in the coming years.
Model-Based Engineering of Collaborative Embedded Systems
Author: Wolfgang Böhm
Publisher: Springer Nature
ISBN: 3030621367
Category : Computers
Languages : en
Pages : 404
Book Description
This Open Access book presents the results of the "Collaborative Embedded Systems" (CrESt) project, aimed at adapting and complementing the methodology underlying modeling techniques developed to cope with the challenges of the dynamic structures of collaborative embedded systems (CESs) based on the SPES development methodology. In order to manage the high complexity of the individual systems and the dynamically formed interaction structures at runtime, advanced and powerful development methods are required that extend the current state of the art in the development of embedded systems and cyber-physical systems. The methodological contributions of the project support the effective and efficient development of CESs in dynamic and uncertain contexts, with special emphasis on the reliability and variability of individual systems and the creation of networks of such systems at runtime. The project was funded by the German Federal Ministry of Education and Research (BMBF), and the case studies are therefore selected from areas that are highly relevant for Germany’s economy (automotive, industrial production, power generation, and robotics). It also supports the digitalization of complex and transformable industrial plants in the context of the German government's "Industry 4.0" initiative, and the project results provide a solid foundation for implementing the German government's high-tech strategy "Innovations for Germany" in the coming years.
Publisher: Springer Nature
ISBN: 3030621367
Category : Computers
Languages : en
Pages : 404
Book Description
This Open Access book presents the results of the "Collaborative Embedded Systems" (CrESt) project, aimed at adapting and complementing the methodology underlying modeling techniques developed to cope with the challenges of the dynamic structures of collaborative embedded systems (CESs) based on the SPES development methodology. In order to manage the high complexity of the individual systems and the dynamically formed interaction structures at runtime, advanced and powerful development methods are required that extend the current state of the art in the development of embedded systems and cyber-physical systems. The methodological contributions of the project support the effective and efficient development of CESs in dynamic and uncertain contexts, with special emphasis on the reliability and variability of individual systems and the creation of networks of such systems at runtime. The project was funded by the German Federal Ministry of Education and Research (BMBF), and the case studies are therefore selected from areas that are highly relevant for Germany’s economy (automotive, industrial production, power generation, and robotics). It also supports the digitalization of complex and transformable industrial plants in the context of the German government's "Industry 4.0" initiative, and the project results provide a solid foundation for implementing the German government's high-tech strategy "Innovations for Germany" in the coming years.
Interactive Artifacts and Furniture Supporting Collaborative Work and Learning
Author: Pierre Dillenbourg
Publisher: Springer Science & Business Media
ISBN: 0387772340
Category : Education
Languages : en
Pages : 185
Book Description
This book reveals how advances in computer science and human-computer interaction impact Computer-Supported Collaborative Learning (CSCL) environments. The underlying theme of the contributions is the social affordances of physical objects. The collaborative situations illustrated in the book are not necessarily learning situation in a school sense. In summary, this book illustrates a turn in the field of CSCL and emphasizes an important message for a generation of CSCL users.
Publisher: Springer Science & Business Media
ISBN: 0387772340
Category : Education
Languages : en
Pages : 185
Book Description
This book reveals how advances in computer science and human-computer interaction impact Computer-Supported Collaborative Learning (CSCL) environments. The underlying theme of the contributions is the social affordances of physical objects. The collaborative situations illustrated in the book are not necessarily learning situation in a school sense. In summary, this book illustrates a turn in the field of CSCL and emphasizes an important message for a generation of CSCL users.
Advanced Model-Based Engineering of Embedded Systems
Author: Klaus Pohl
Publisher: Springer
ISBN: 3319480030
Category : Computers
Languages : en
Pages : 301
Book Description
This book provides a comprehensive introduction into the SPES XT modeling framework. Moreover, it shows the applicability of the framework for the development of embedded systems in different industry domains and reports on the lessons learned. It also describes how the SPES XT modeling framework can be tailored to meet domain and project-specific needs. The book is structured into four parts: Part I “Starting Situation” discusses the status quo of the development of embedded systems with specific focus on model-based engineering and summarizes key challenges emerging from industrial practice. Part II “Modeling Theory” introduces the SPES XT modeling framework and explains the core underlying principles. Part III “Application of the SPES XT Framework” describes the application of the SPES XT modeling framework and how it addresses major industrial challenges. Part IV “Evaluation and Technology Transfer” assess the impact of the SPES XT modeling framework and includes various exemplary applications from automation, automotive, and avionics. Overall, the SPES XT modeling framework offers a seamless model-based engineering approach. It addresses core challenges faced during the engineering of embedded systems. Among others, it offers aligned and integrated techniques for the early validation of engineering artefacts (including requirements and functional and technical designs), the management of product variants and their variability, modular safety assurance and deployment of embedded software.
Publisher: Springer
ISBN: 3319480030
Category : Computers
Languages : en
Pages : 301
Book Description
This book provides a comprehensive introduction into the SPES XT modeling framework. Moreover, it shows the applicability of the framework for the development of embedded systems in different industry domains and reports on the lessons learned. It also describes how the SPES XT modeling framework can be tailored to meet domain and project-specific needs. The book is structured into four parts: Part I “Starting Situation” discusses the status quo of the development of embedded systems with specific focus on model-based engineering and summarizes key challenges emerging from industrial practice. Part II “Modeling Theory” introduces the SPES XT modeling framework and explains the core underlying principles. Part III “Application of the SPES XT Framework” describes the application of the SPES XT modeling framework and how it addresses major industrial challenges. Part IV “Evaluation and Technology Transfer” assess the impact of the SPES XT modeling framework and includes various exemplary applications from automation, automotive, and avionics. Overall, the SPES XT modeling framework offers a seamless model-based engineering approach. It addresses core challenges faced during the engineering of embedded systems. Among others, it offers aligned and integrated techniques for the early validation of engineering artefacts (including requirements and functional and technical designs), the management of product variants and their variability, modular safety assurance and deployment of embedded software.
Analysis, Design, and Optimization of Embedded Control Systems
Author: Amir Aminifar
Publisher: Linköping University Electronic Press
ISBN: 917685826X
Category : Control systems
Languages : en
Pages : 183
Book Description
Today, many embedded or cyber-physical systems, e.g., in the automotive domain, comprise several control applications, sharing the same platform. It is well known that such resource sharing leads to complex temporal behaviors that degrades the quality of control, and more importantly, may even jeopardize stability in the worst case, if not properly taken into account. In this thesis, we consider embedded control or cyber-physical systems, where several control applications share the same processing unit. The focus is on the control-scheduling co-design problem, where the controller and scheduling parameters are jointly optimized. The fundamental difference between control applications and traditional embedded applications motivates the need for novel methodologies for the design and optimization of embedded control systems. This thesis is one more step towards correct design and optimization of embedded control systems. Offline and online methodologies for embedded control systems are covered in this thesis. The importance of considering both the expected control performance and stability is discussed and a control-scheduling co-design methodology is proposed to optimize control performance while guaranteeing stability. Orthogonal to this, bandwidth-efficient stabilizing control servers are proposed, which support compositionality, isolation, and resource-efficiency in design and co-design. Finally, we extend the scope of the proposed approach to non-periodic control schemes and address the challenges in sharing the platform with self-triggered controllers. In addition to offline methodologies, a novel online scheduling policy to stabilize control applications is proposed.
Publisher: Linköping University Electronic Press
ISBN: 917685826X
Category : Control systems
Languages : en
Pages : 183
Book Description
Today, many embedded or cyber-physical systems, e.g., in the automotive domain, comprise several control applications, sharing the same platform. It is well known that such resource sharing leads to complex temporal behaviors that degrades the quality of control, and more importantly, may even jeopardize stability in the worst case, if not properly taken into account. In this thesis, we consider embedded control or cyber-physical systems, where several control applications share the same processing unit. The focus is on the control-scheduling co-design problem, where the controller and scheduling parameters are jointly optimized. The fundamental difference between control applications and traditional embedded applications motivates the need for novel methodologies for the design and optimization of embedded control systems. This thesis is one more step towards correct design and optimization of embedded control systems. Offline and online methodologies for embedded control systems are covered in this thesis. The importance of considering both the expected control performance and stability is discussed and a control-scheduling co-design methodology is proposed to optimize control performance while guaranteeing stability. Orthogonal to this, bandwidth-efficient stabilizing control servers are proposed, which support compositionality, isolation, and resource-efficiency in design and co-design. Finally, we extend the scope of the proposed approach to non-periodic control schemes and address the challenges in sharing the platform with self-triggered controllers. In addition to offline methodologies, a novel online scheduling policy to stabilize control applications is proposed.
System-Level Design of GPU-Based Embedded Systems
Author: Arian Maghazeh
Publisher: Linköping University Electronic Press
ISBN: 9176851753
Category :
Languages : en
Pages : 81
Book Description
Modern embedded systems deploy several hardware accelerators, in a heterogeneous manner, to deliver high-performance computing. Among such devices, graphics processing units (GPUs) have earned a prominent position by virtue of their immense computing power. However, a system design that relies on sheer throughput of GPUs is often incapable of satisfying the strict power- and time-related constraints faced by the embedded systems. This thesis presents several system-level software techniques to optimize the design of GPU-based embedded systems under various graphics and non-graphics applications. As compared to the conventional application-level optimizations, the system-wide view of our proposed techniques brings about several advantages: First, it allows for fully incorporating the limitations and requirements of the various system parts in the design process. Second, it can unveil optimization opportunities through exposing the information flow between the processing components. Third, the techniques are generally applicable to a wide range of applications with similar characteristics. In addition, multiple system-level techniques can be combined together or with application-level techniques to further improve the performance. We begin by studying some of the unique attributes of GPU-based embedded systems and discussing several factors that distinguish the design of these systems from that of the conventional high-end GPU-based systems. We then proceed to develop two techniques that address an important challenge in the design of GPU-based embedded systems from different perspectives. The challenge arises from the fact that GPUs require a large amount of workload to be present at runtime in order to deliver a high throughput. However, for some embedded applications, collecting large batches of input data requires an unacceptable waiting time, prompting a trade-off between throughput and latency. We also develop an optimization technique for GPU-based applications to address the memory bottleneck issue by utilizing the GPU L2 cache to shorten data access time. Moreover, in the area of graphics applications, and in particular with a focus on mobile games, we propose a power management scheme to reduce the GPU power consumption by dynamically adjusting the display resolution, while considering the user's visual perception at various resolutions. We also discuss the collective impact of the proposed techniques in tackling the design challenges of emerging complex systems. The proposed techniques are assessed by real-life experimentations on GPU-based hardware platforms, which demonstrate the superior performance of our approaches as compared to the state-of-the-art techniques.
Publisher: Linköping University Electronic Press
ISBN: 9176851753
Category :
Languages : en
Pages : 81
Book Description
Modern embedded systems deploy several hardware accelerators, in a heterogeneous manner, to deliver high-performance computing. Among such devices, graphics processing units (GPUs) have earned a prominent position by virtue of their immense computing power. However, a system design that relies on sheer throughput of GPUs is often incapable of satisfying the strict power- and time-related constraints faced by the embedded systems. This thesis presents several system-level software techniques to optimize the design of GPU-based embedded systems under various graphics and non-graphics applications. As compared to the conventional application-level optimizations, the system-wide view of our proposed techniques brings about several advantages: First, it allows for fully incorporating the limitations and requirements of the various system parts in the design process. Second, it can unveil optimization opportunities through exposing the information flow between the processing components. Third, the techniques are generally applicable to a wide range of applications with similar characteristics. In addition, multiple system-level techniques can be combined together or with application-level techniques to further improve the performance. We begin by studying some of the unique attributes of GPU-based embedded systems and discussing several factors that distinguish the design of these systems from that of the conventional high-end GPU-based systems. We then proceed to develop two techniques that address an important challenge in the design of GPU-based embedded systems from different perspectives. The challenge arises from the fact that GPUs require a large amount of workload to be present at runtime in order to deliver a high throughput. However, for some embedded applications, collecting large batches of input data requires an unacceptable waiting time, prompting a trade-off between throughput and latency. We also develop an optimization technique for GPU-based applications to address the memory bottleneck issue by utilizing the GPU L2 cache to shorten data access time. Moreover, in the area of graphics applications, and in particular with a focus on mobile games, we propose a power management scheme to reduce the GPU power consumption by dynamically adjusting the display resolution, while considering the user's visual perception at various resolutions. We also discuss the collective impact of the proposed techniques in tackling the design challenges of emerging complex systems. The proposed techniques are assessed by real-life experimentations on GPU-based hardware platforms, which demonstrate the superior performance of our approaches as compared to the state-of-the-art techniques.
Model-Based Engineering with AADL
Author: Peter H. Feiler
Publisher: Addison-Wesley
ISBN: 0133132900
Category : Computers
Languages : en
Pages : 765
Book Description
Conventional build-then-test practices are making today’s embedded, software-reliant systems unaffordable to build. In response, more than thirty leading industrial organizations have joined SAE (formerly, the Society of Automotive Engineers) to define the SAE Architecture Analysis & Design Language (AADL) AS-5506 Standard, a rigorous and extensible foundation for model-based engineering analysis practices that encompass software system design, integration, and assurance. Using AADL, you can conduct lightweight and rigorous analyses of critical real-time factors such as performance, dependability, security, and data integrity. You can integrate additional established and custom analysis/specification techniques into your engineering environment, developing a fully unified architecture model that makes it easier to build reliable systems that meet customer expectations. Model-Based Engineering with AADL is the first guide to using this new international standard to optimize your development processes. Coauthored by Peter H. Feiler, the standard’s author and technical lead, this introductory reference and tutorial is ideal for self-directed learning or classroom instruction, and is an excellent reference for practitioners, including architects, developers, integrators, validators, certifiers, first-level technical leaders, and project managers. Packed with real-world examples, it introduces all aspects of the AADL notation as part of an architecture-centric, model-based engineering approach to discovering embedded software systems problems earlier, when they cost less to solve. Throughout, the authors compare AADL to other modeling notations and approaches, while presenting the language via a complete case study: the development and analysis of a realistic example system through repeated refinement and analysis. Part One introduces both the AADL language and core Model-Based Engineering (MBE) practices, explaining basic software systems modeling and analysis in the context of an example system, and offering practical guidelines for effectively applying AADL. Part Two describes the characteristics of each AADL element, including their representations, applicability, and constraints. The Appendix includes comprehensive listings of AADL language elements, properties incorporated in the AADL standard, and a description of the book’s example system.
Publisher: Addison-Wesley
ISBN: 0133132900
Category : Computers
Languages : en
Pages : 765
Book Description
Conventional build-then-test practices are making today’s embedded, software-reliant systems unaffordable to build. In response, more than thirty leading industrial organizations have joined SAE (formerly, the Society of Automotive Engineers) to define the SAE Architecture Analysis & Design Language (AADL) AS-5506 Standard, a rigorous and extensible foundation for model-based engineering analysis practices that encompass software system design, integration, and assurance. Using AADL, you can conduct lightweight and rigorous analyses of critical real-time factors such as performance, dependability, security, and data integrity. You can integrate additional established and custom analysis/specification techniques into your engineering environment, developing a fully unified architecture model that makes it easier to build reliable systems that meet customer expectations. Model-Based Engineering with AADL is the first guide to using this new international standard to optimize your development processes. Coauthored by Peter H. Feiler, the standard’s author and technical lead, this introductory reference and tutorial is ideal for self-directed learning or classroom instruction, and is an excellent reference for practitioners, including architects, developers, integrators, validators, certifiers, first-level technical leaders, and project managers. Packed with real-world examples, it introduces all aspects of the AADL notation as part of an architecture-centric, model-based engineering approach to discovering embedded software systems problems earlier, when they cost less to solve. Throughout, the authors compare AADL to other modeling notations and approaches, while presenting the language via a complete case study: the development and analysis of a realistic example system through repeated refinement and analysis. Part One introduces both the AADL language and core Model-Based Engineering (MBE) practices, explaining basic software systems modeling and analysis in the context of an example system, and offering practical guidelines for effectively applying AADL. Part Two describes the characteristics of each AADL element, including their representations, applicability, and constraints. The Appendix includes comprehensive listings of AADL language elements, properties incorporated in the AADL standard, and a description of the book’s example system.
Model-Based Engineering of Embedded Systems
Author: Klaus Pohl
Publisher: Springer Science & Business Media
ISBN: 3642346146
Category : Computers
Languages : en
Pages : 298
Book Description
Embedded systems have long become essential in application areas in which human control is impossible or infeasible. The development of modern embedded systems is becoming increasingly difficult and challenging because of their overall system complexity, their tighter and cross-functional integration, the increasing requirements concerning safety and real-time behavior, and the need to reduce development and operation costs. This book provides a comprehensive overview of the Software Platform Embedded Systems (SPES) modeling framework and demonstrates its applicability in embedded system development in various industry domains such as automation, automotive, avionics, energy, and healthcare. In SPES 2020, twenty-one partners from academia and industry have joined forces in order to develop and evaluate in different industrial domains a modeling framework that reflects the current state of the art in embedded systems engineering. The content of this book is structured in four parts. Part I “Starting Point” discusses the status quo of embedded systems development and model-based engineering, and summarizes the key requirements faced when developing embedded systems in different application domains. Part II “The SPES Modeling Framework” describes the SPES modeling framework. Part III “Application and Evaluation of the SPES Modeling Framework” reports on the validation steps taken to ensure that the framework met the requirements discussed in Part I. Finally, Part IV “Impact of the SPES Modeling Framework” summarizes the results achieved and provides an outlook on future work. The book is mainly aimed at professionals and practitioners who deal with the development of embedded systems on a daily basis. Researchers in academia and industry may use it as a compendium for the requirements and state-of-the-art solution concepts for embedded systems development.
Publisher: Springer Science & Business Media
ISBN: 3642346146
Category : Computers
Languages : en
Pages : 298
Book Description
Embedded systems have long become essential in application areas in which human control is impossible or infeasible. The development of modern embedded systems is becoming increasingly difficult and challenging because of their overall system complexity, their tighter and cross-functional integration, the increasing requirements concerning safety and real-time behavior, and the need to reduce development and operation costs. This book provides a comprehensive overview of the Software Platform Embedded Systems (SPES) modeling framework and demonstrates its applicability in embedded system development in various industry domains such as automation, automotive, avionics, energy, and healthcare. In SPES 2020, twenty-one partners from academia and industry have joined forces in order to develop and evaluate in different industrial domains a modeling framework that reflects the current state of the art in embedded systems engineering. The content of this book is structured in four parts. Part I “Starting Point” discusses the status quo of embedded systems development and model-based engineering, and summarizes the key requirements faced when developing embedded systems in different application domains. Part II “The SPES Modeling Framework” describes the SPES modeling framework. Part III “Application and Evaluation of the SPES Modeling Framework” reports on the validation steps taken to ensure that the framework met the requirements discussed in Part I. Finally, Part IV “Impact of the SPES Modeling Framework” summarizes the results achieved and provides an outlook on future work. The book is mainly aimed at professionals and practitioners who deal with the development of embedded systems on a daily basis. Researchers in academia and industry may use it as a compendium for the requirements and state-of-the-art solution concepts for embedded systems development.
Coordination Theory and Collaboration Technology
Author: Gary M. Olson
Publisher: Psychology Press
ISBN: 1135664668
Category : Language Arts & Disciplines
Languages : en
Pages : 876
Book Description
The National Science Foundation funded the first Coordination Theory and Collaboration Technology initiative to look at systems that support collaborations in business and elsewhere. This book explores the global revolution in human interconnectedness. It will discuss the various collaborative workgroups and their use in technology. The initiative focuses on processes of coordination and cooperation among autonomous units in human systems, in computer and communication systems, and in hybrid organizations of both systems. This initiative is motivated by three scientific issues which have been the focus of separate research efforts, but which may benefit from collaborative research. The first is the effort to discover the principles underlying how people collaborate and coordinate work efficiently and productively in environments characterized by a high degree of decentralized computation and decision making. The second is to gain a better fundamental understanding of the structure and outputs of organizations, industries, and markets which incorporate sophisticated, decentralized information and communications technology as an important component of their operations. The third is to understand problems of coordination in decentralized or open computer systems.
Publisher: Psychology Press
ISBN: 1135664668
Category : Language Arts & Disciplines
Languages : en
Pages : 876
Book Description
The National Science Foundation funded the first Coordination Theory and Collaboration Technology initiative to look at systems that support collaborations in business and elsewhere. This book explores the global revolution in human interconnectedness. It will discuss the various collaborative workgroups and their use in technology. The initiative focuses on processes of coordination and cooperation among autonomous units in human systems, in computer and communication systems, and in hybrid organizations of both systems. This initiative is motivated by three scientific issues which have been the focus of separate research efforts, but which may benefit from collaborative research. The first is the effort to discover the principles underlying how people collaborate and coordinate work efficiently and productively in environments characterized by a high degree of decentralized computation and decision making. The second is to gain a better fundamental understanding of the structure and outputs of organizations, industries, and markets which incorporate sophisticated, decentralized information and communications technology as an important component of their operations. The third is to understand problems of coordination in decentralized or open computer systems.
Tool-Based Requirement Traceability between Requirement and Design Artifacts
Author: Bernhard Turban
Publisher: Springer Science & Business Media
ISBN: 3834824747
Category : Computers
Languages : en
Pages : 460
Book Description
Processes for developing safety-critical systems impose special demands on ensuring requirements traceability. Achieving valuable traceability information, however, is especially difficult concerning the transition from requirements to design. Bernhard Turban analyzes systems and software engineering theories cross-cutting the issue (embedded systems development, systems engineering, software engineering, requirements engineering and management, design theory and processes for safety-critical systems). As a solution, the author proposes a new tool approach to support designers in their thinking in order to achieve traceability as a by-product to normal design activities and to extend traceability information with information about design decision rationale.
Publisher: Springer Science & Business Media
ISBN: 3834824747
Category : Computers
Languages : en
Pages : 460
Book Description
Processes for developing safety-critical systems impose special demands on ensuring requirements traceability. Achieving valuable traceability information, however, is especially difficult concerning the transition from requirements to design. Bernhard Turban analyzes systems and software engineering theories cross-cutting the issue (embedded systems development, systems engineering, software engineering, requirements engineering and management, design theory and processes for safety-critical systems). As a solution, the author proposes a new tool approach to support designers in their thinking in order to achieve traceability as a by-product to normal design activities and to extend traceability information with information about design decision rationale.
Real-Time Systems Design and Analysis
Author: Phillip A. Laplante
Publisher: John Wiley & Sons
ISBN: 0471648280
Category : Science
Languages : en
Pages : 480
Book Description
The leading guide to real-time systems design-revised and updated This third edition of Phillip Laplante's bestselling, practical guide to building real-time systems maintains its predecessors' unique holistic, systems-based approach devised to help engineers write problem-solving software. Dr. Laplante incorporates a survey of related technologies and their histories, complete with time-saving practical tips, hands-on instructions, C code, and insights into decreasing ramp-up times. Real-Time Systems Design and Analysis, Third Edition is essential for students and practicing software engineers who want improved designs, faster computation, and ultimate cost savings. Chapters discuss hardware considerations and software requirements, software systems design, the software production process, performance estimation and optimization, and engineering considerations. This new edition has been revised to include: * Up-to-date information on object-oriented technologies for real-time including object-oriented analysis, design, and languages such as Java, C++, and C# * Coverage of significant developments in the field, such as: New life-cycle methodologies and advanced programming practices for real-time, including Agile methodologies Analysis techniques for commercial real-time operating system technology Hardware advances, including field-programmable gate arrays and memory technology * Deeper coverage of: Scheduling and rate-monotonic theories Synchronization and communication techniques Software testing and metrics Real-Time Systems Design and Analysis, Third Edition remains an unmatched resource for students and practicing software engineers who want improved designs, faster computation, and ultimate cost savings.
Publisher: John Wiley & Sons
ISBN: 0471648280
Category : Science
Languages : en
Pages : 480
Book Description
The leading guide to real-time systems design-revised and updated This third edition of Phillip Laplante's bestselling, practical guide to building real-time systems maintains its predecessors' unique holistic, systems-based approach devised to help engineers write problem-solving software. Dr. Laplante incorporates a survey of related technologies and their histories, complete with time-saving practical tips, hands-on instructions, C code, and insights into decreasing ramp-up times. Real-Time Systems Design and Analysis, Third Edition is essential for students and practicing software engineers who want improved designs, faster computation, and ultimate cost savings. Chapters discuss hardware considerations and software requirements, software systems design, the software production process, performance estimation and optimization, and engineering considerations. This new edition has been revised to include: * Up-to-date information on object-oriented technologies for real-time including object-oriented analysis, design, and languages such as Java, C++, and C# * Coverage of significant developments in the field, such as: New life-cycle methodologies and advanced programming practices for real-time, including Agile methodologies Analysis techniques for commercial real-time operating system technology Hardware advances, including field-programmable gate arrays and memory technology * Deeper coverage of: Scheduling and rate-monotonic theories Synchronization and communication techniques Software testing and metrics Real-Time Systems Design and Analysis, Third Edition remains an unmatched resource for students and practicing software engineers who want improved designs, faster computation, and ultimate cost savings.