Arithmetic Compactifications of PEL-Type Shimura Varieties

Arithmetic Compactifications of PEL-Type Shimura Varieties PDF Author: Kai-Wen Lan
Publisher: Princeton University Press
ISBN: 1400846013
Category : Mathematics
Languages : en
Pages : 584

Get Book Here

Book Description
By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary. This book explains in detail the following topics about PEL-type Shimura varieties and their compactifications: A construction of smooth integral models of PEL-type Shimura varieties by defining and representing moduli problems of abelian schemes with PEL structures An analysis of the degeneration of abelian varieties with PEL structures into semiabelian schemes, over noetherian normal complete adic base rings A construction of toroidal and minimal compactifications of smooth integral models of PEL-type Shimura varieties, with detailed descriptions of their structure near the boundary Through these topics, the book generalizes the theory of degenerations of polarized abelian varieties and the application of that theory to the construction of toroidal and minimal compactifications of Siegel moduli schemes over the integers (as developed by Mumford, Faltings, and Chai).

Arithmetic Compactifications of PEL-Type Shimura Varieties

Arithmetic Compactifications of PEL-Type Shimura Varieties PDF Author: Kai-Wen Lan
Publisher: Princeton University Press
ISBN: 1400846013
Category : Mathematics
Languages : en
Pages : 584

Get Book Here

Book Description
By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary. This book explains in detail the following topics about PEL-type Shimura varieties and their compactifications: A construction of smooth integral models of PEL-type Shimura varieties by defining and representing moduli problems of abelian schemes with PEL structures An analysis of the degeneration of abelian varieties with PEL structures into semiabelian schemes, over noetherian normal complete adic base rings A construction of toroidal and minimal compactifications of smooth integral models of PEL-type Shimura varieties, with detailed descriptions of their structure near the boundary Through these topics, the book generalizes the theory of degenerations of polarized abelian varieties and the application of that theory to the construction of toroidal and minimal compactifications of Siegel moduli schemes over the integers (as developed by Mumford, Faltings, and Chai).

Compactifications Of Pel-type Shimura Varieties And Kuga Families With Ordinary Loci

Compactifications Of Pel-type Shimura Varieties And Kuga Families With Ordinary Loci PDF Author: Kai-wen Lan
Publisher: #N/A
ISBN: 9813207345
Category : Mathematics
Languages : en
Pages : 580

Get Book Here

Book Description
This book is a comprehensive treatise on the partial toroidal and minimal compactifications of the ordinary loci of PEL-type Shimura varieties and Kuga families, and on the canonical and subcanonical extensions of automorphic bundles. The results in this book serve as the logical foundation of several recent developments in the theory of p-adic automorphic forms; and of the author's work with Harris, Taylor, and Thorne on the construction of Galois representations without any polarizability conditions, which is a major breakthrough in the Langlands program.This book is important for active researchers and graduate students who need to understand the above-mentioned recent works, and is written with such users of the theory in mind, providing plenty of explanations and background materials, which should be helpful for people working in similar areas. It also contains precise internal and external references, and an index of notation and terminologies. These are useful for readers to quickly locate materials they need.

Compactifications of PEL-type Shimura Varieties and Kuga Families with Ordinary Loci

Compactifications of PEL-type Shimura Varieties and Kuga Families with Ordinary Loci PDF Author: Kai-Wen Lan
Publisher: World Scientific Publishing Company
ISBN: 9789813207325
Category : Arithmetical algebraic geometry
Languages : en
Pages : 0

Get Book Here

Book Description
This book is a comprehensive treatise on the partial toroidal and minimal compactifications of the ordinary loci of PEL-type Shimura varieties and Kuga families, and on the canonical and subcanonical extensions of automorphic bundles. The results in this book serve as the logical foundation of several recent developments in the theory of p-adic automorphic forms; and of the author's work with Harris, Taylor, and Thorne on the construction of Galois representations without any polarizability conditions, which is a major breakthrough in the Langlands program. This book is important for active researchers and graduate students who need to understand the above-mentioned recent works, and is written with such users of the theory in mind, providing plenty of explanations and background materials, which should be helpful for people working in similar areas. It also contains precise internal and external references, and an index of notation and terminologies. These are useful for readers to quickly locate materials they need.

Cohomology of Arithmetic Groups

Cohomology of Arithmetic Groups PDF Author: James W. Cogdell
Publisher: Springer
ISBN: 3319955497
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
This book discusses the mathematical interests of Joachim Schwermer, who throughout his career has focused on the cohomology of arithmetic groups, automorphic forms and the geometry of arithmetic manifolds. To mark his 66th birthday, the editors brought together mathematical experts to offer an overview of the current state of research in these and related areas. The result is this book, with contributions ranging from topology to arithmetic. It probes the relation between cohomology of arithmetic groups and automorphic forms and their L-functions, and spans the range from classical Bianchi groups to the theory of Shimura varieties. It is a valuable reference for both experts in the fields and for graduate students and postdocs wanting to discover where the current frontiers lie.

Fifth International Congress of Chinese Mathematicians

Fifth International Congress of Chinese Mathematicians PDF Author: Lizhen Ji
Publisher: American Mathematical Soc.
ISBN: 0821875868
Category : Mathematics
Languages : en
Pages : 520

Get Book Here

Book Description
This two-part volume represents the proceedings of the Fifth International Congress of Chinese Mathematicians, held at Tsinghua University, Beijing, in December 2010. The Congress brought together eminent Chinese and overseas mathematicians to discuss the latest developments in pure and applied mathematics. Included are 60 papers based on lectures given at the conference.

The Geometric and Arithmetic Volume of Shimura Varieties of Orthogonal Type

The Geometric and Arithmetic Volume of Shimura Varieties of Orthogonal Type PDF Author: Fritz Hörmann
Publisher: American Mathematical Society
ISBN: 1470419122
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
This book outlines a functorial theory of integral models of (mixed) Shimura varieties and of their toroidal compactifications, for odd primes of good reduction. This is the integral version, developed in the author's thesis, of the theory invented by Deligne and Pink in the rational case. In addition, the author develops a theory of arithmetic Chern classes of integral automorphic vector bundles with singular metrics using the work of Burgos, Kramer and Kühn. The main application is calculating arithmetic volumes or "heights" of Shimura varieties of orthogonal type using Borcherds' famous modular forms with their striking product formula--an idea due to Bruinier-Burgos-Kühn and Kudla. This should be seen as an Arakelov analogue of the classical calculation of volumes of orthogonal locally symmetric spaces by Siegel and Weil. In the latter theory, the volumes are related to special values of (normalized) Siegel Eisenstein series. In this book, it is proved that the Arakelov analogues are related to special derivatives of such Eisenstein series. This result gives substantial evidence in the direction of Kudla's conjectures in arbitrary dimensions. The validity of the full set of conjectures of Kudla, in turn, would give a conceptual proof and far-reaching generalizations of the work of Gross and Zagier on the Birch and Swinnerton-Dyer conjecture. Titles in this series are co-published with the Centre de Recherches Mathématiques.

Shimura Varieties

Shimura Varieties PDF Author: Thomas Haines
Publisher: Cambridge University Press
ISBN: 1108704867
Category : Mathematics
Languages : en
Pages : 341

Get Book Here

Book Description
This volume forms the sequel to "On the stabilization of the trace formula", published by International Press of Boston, Inc., 2011

 PDF Author:
Publisher: World Scientific
ISBN:
Category :
Languages : en
Pages : 1191

Get Book Here

Book Description


Proceedings Of The International Congress Of Mathematicians 2010 (Icm 2010) (In 4 Volumes) - Vol. I: Plenary Lectures And Ceremonies, Vols. Ii-iv: Invited Lectures

Proceedings Of The International Congress Of Mathematicians 2010 (Icm 2010) (In 4 Volumes) - Vol. I: Plenary Lectures And Ceremonies, Vols. Ii-iv: Invited Lectures PDF Author: Rajendra Bhatia
Publisher: World Scientific
ISBN: 9814462934
Category : Mathematics
Languages : en
Pages : 4137

Get Book Here

Book Description
ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.

Perfectoid Spaces

Perfectoid Spaces PDF Author: Bhargav Bhatt
Publisher: American Mathematical Society
ISBN: 1470465108
Category : Mathematics
Languages : en
Pages : 297

Get Book Here

Book Description
Introduced by Peter Scholze in 2011, perfectoid spaces are a bridge between geometry in characteristic 0 and characteristic $p$, and have been used to solve many important problems, including cases of the weight-monodromy conjecture and the association of Galois representations to torsion classes in cohomology. In recognition of the transformative impact perfectoid spaces have had on the field of arithmetic geometry, Scholze was awarded a Fields Medal in 2018. This book, originating from a series of lectures given at the 2017 Arizona Winter School on perfectoid spaces, provides a broad introduction to the subject. After an introduction with insight into the history and future of the subject by Peter Scholze, Jared Weinstein gives a user-friendly and utilitarian account of the theory of adic spaces. Kiran Kedlaya further develops the foundational material, studies vector bundles on Fargues–Fontaine curves, and introduces diamonds and shtukas over them with a view toward the local Langlands correspondence. Bhargav Bhatt explains the application of perfectoid spaces to comparison isomorphisms in $p$-adic Hodge theory. Finally, Ana Caraiani explains the application of perfectoid spaces to the construction of Galois representations associated to torsion classes in the cohomology of locally symmetric spaces for the general linear group. This book will be an invaluable asset for any graduate student or researcher interested in the theory of perfectoid spaces and their applications.