Author: G.H Kirov
Publisher: CRC Press
ISBN: 9780750301817
Category : Mathematics
Languages : en
Pages : 266
Book Description
In the theory of splines, a function is approximated piece-wise by (usually cubic) polynomials. Quasi-splines is the natural extension of this, allowing us to use any useful class of functions adapted to the problem. Approximation with Quasi-Splines is a detailed account of this highly useful technique in numerical analysis. The book presents the requisite approximation theorems and optimization methods, developing a unified theory of one and several variables. The author applies his techniques to the evaluation of definite integrals (quadrature) and its many-variables generalization, which he calls "cubature." This book should be required reading for all practitioners of the methods of approximation, including researchers, teachers, and students in applied, numerical and computational mathematics.
Approximation with Quasi-Splines
Author: G.H Kirov
Publisher: CRC Press
ISBN: 9780750301817
Category : Mathematics
Languages : en
Pages : 266
Book Description
In the theory of splines, a function is approximated piece-wise by (usually cubic) polynomials. Quasi-splines is the natural extension of this, allowing us to use any useful class of functions adapted to the problem. Approximation with Quasi-Splines is a detailed account of this highly useful technique in numerical analysis. The book presents the requisite approximation theorems and optimization methods, developing a unified theory of one and several variables. The author applies his techniques to the evaluation of definite integrals (quadrature) and its many-variables generalization, which he calls "cubature." This book should be required reading for all practitioners of the methods of approximation, including researchers, teachers, and students in applied, numerical and computational mathematics.
Publisher: CRC Press
ISBN: 9780750301817
Category : Mathematics
Languages : en
Pages : 266
Book Description
In the theory of splines, a function is approximated piece-wise by (usually cubic) polynomials. Quasi-splines is the natural extension of this, allowing us to use any useful class of functions adapted to the problem. Approximation with Quasi-Splines is a detailed account of this highly useful technique in numerical analysis. The book presents the requisite approximation theorems and optimization methods, developing a unified theory of one and several variables. The author applies his techniques to the evaluation of definite integrals (quadrature) and its many-variables generalization, which he calls "cubature." This book should be required reading for all practitioners of the methods of approximation, including researchers, teachers, and students in applied, numerical and computational mathematics.
Computation of Curves and Surfaces
Author: Wolfgang Dahmen
Publisher: Springer Science & Business Media
ISBN: 9400920172
Category : Mathematics
Languages : en
Pages : 537
Book Description
Assembled here is a collection of articles presented at a NATO ADVANCED STU DY INSTITUTE held at Puerto de la Cruz, Tenerife, Spain during the period of July 10th to 21st, 1989. In addition to the editors of these proceedings Professor Larry L. Schumaker from Vanderbilt University, Nashville, Tennessee, served as a member of the international organizing committee. The contents of the contribu tions fall within the heading of COMPUTATION OF CURVES AND SURFACES and therefore address mathematical and computational issues pertaining to the dis play, modeling, interrogation and representation of complex geometrical objects in various scientific and technical environments. As is the intent of the NATO ASI program the meeting was two weeks in length and the body of the scientific activities was organized around prominent experts. Each of them presented lectures on his current research activity. We were fortunate to have sixteen distinguished invited speakers representing nine NATO countries: W. Bohm (Federal Republic of Germany), C. de Boor (USA), C.K. Chui (USA), W. Dahmen (Federal Republic of Germany), F. Fontanella (Italy), M. Gasca (Spain), R. Goldman (Canada), T.N.T. Goodman (UK), J.A. Gregory (UK), C. Hoffman (USA), J. Hoschek (Federal Republic of Germany), A. Le Mehaute (France), T. Lyche (Norway), C.A. Micchelli (USA), 1.1. Schumaker (USA), C. Traas (The Netherlands). The audience consisted of both young researchers as well as established scientists from twelve NATO countries and several non-NATO countries.
Publisher: Springer Science & Business Media
ISBN: 9400920172
Category : Mathematics
Languages : en
Pages : 537
Book Description
Assembled here is a collection of articles presented at a NATO ADVANCED STU DY INSTITUTE held at Puerto de la Cruz, Tenerife, Spain during the period of July 10th to 21st, 1989. In addition to the editors of these proceedings Professor Larry L. Schumaker from Vanderbilt University, Nashville, Tennessee, served as a member of the international organizing committee. The contents of the contribu tions fall within the heading of COMPUTATION OF CURVES AND SURFACES and therefore address mathematical and computational issues pertaining to the dis play, modeling, interrogation and representation of complex geometrical objects in various scientific and technical environments. As is the intent of the NATO ASI program the meeting was two weeks in length and the body of the scientific activities was organized around prominent experts. Each of them presented lectures on his current research activity. We were fortunate to have sixteen distinguished invited speakers representing nine NATO countries: W. Bohm (Federal Republic of Germany), C. de Boor (USA), C.K. Chui (USA), W. Dahmen (Federal Republic of Germany), F. Fontanella (Italy), M. Gasca (Spain), R. Goldman (Canada), T.N.T. Goodman (UK), J.A. Gregory (UK), C. Hoffman (USA), J. Hoschek (Federal Republic of Germany), A. Le Mehaute (France), T. Lyche (Norway), C.A. Micchelli (USA), 1.1. Schumaker (USA), C. Traas (The Netherlands). The audience consisted of both young researchers as well as established scientists from twelve NATO countries and several non-NATO countries.
Splines and PDEs: From Approximation Theory to Numerical Linear Algebra
Author: Angela Kunoth
Publisher: Springer
ISBN: 331994911X
Category : Mathematics
Languages : en
Pages : 325
Book Description
This book takes readers on a multi-perspective tour through state-of-the-art mathematical developments related to the numerical treatment of PDEs based on splines, and in particular isogeometric methods. A wide variety of research topics are covered, ranging from approximation theory to structured numerical linear algebra. More precisely, the book provides (i) a self-contained introduction to B-splines, with special focus on approximation and hierarchical refinement, (ii) a broad survey of numerical schemes for control problems based on B-splines and B-spline-type wavelets, (iii) an exhaustive description of methods for computing and analyzing the spectral distribution of discretization matrices, and (iv) a detailed overview of the mathematical and implementational aspects of isogeometric analysis. The text is the outcome of a C.I.M.E. summer school held in Cetraro (Italy), July 2017, featuring four prominent lecturers with different theoretical and application perspectives. The book may serve both as a reference and an entry point into further research.
Publisher: Springer
ISBN: 331994911X
Category : Mathematics
Languages : en
Pages : 325
Book Description
This book takes readers on a multi-perspective tour through state-of-the-art mathematical developments related to the numerical treatment of PDEs based on splines, and in particular isogeometric methods. A wide variety of research topics are covered, ranging from approximation theory to structured numerical linear algebra. More precisely, the book provides (i) a self-contained introduction to B-splines, with special focus on approximation and hierarchical refinement, (ii) a broad survey of numerical schemes for control problems based on B-splines and B-spline-type wavelets, (iii) an exhaustive description of methods for computing and analyzing the spectral distribution of discretization matrices, and (iv) a detailed overview of the mathematical and implementational aspects of isogeometric analysis. The text is the outcome of a C.I.M.E. summer school held in Cetraro (Italy), July 2017, featuring four prominent lecturers with different theoretical and application perspectives. The book may serve both as a reference and an entry point into further research.
Approximation and Modeling with B-Splines
Author: Klaus Hollig
Publisher: SIAM
ISBN: 1611972949
Category : Mathematics
Languages : en
Pages : 228
Book Description
B-splines are fundamental to approximation and data fitting, geometric modeling, automated manufacturing, computer graphics, and numerical simulation. With an emphasis on key results and methods that are most widely used in practice, this textbook provides a unified introduction to the basic components of B-spline theory: approximation methods (mathematics), modeling techniques (engineering), and geometric algorithms (computer science). A supplemental Web site will provide a collection of problems, some with solutions, slides for use in lectures, and programs with demos.
Publisher: SIAM
ISBN: 1611972949
Category : Mathematics
Languages : en
Pages : 228
Book Description
B-splines are fundamental to approximation and data fitting, geometric modeling, automated manufacturing, computer graphics, and numerical simulation. With an emphasis on key results and methods that are most widely used in practice, this textbook provides a unified introduction to the basic components of B-spline theory: approximation methods (mathematics), modeling techniques (engineering), and geometric algorithms (computer science). A supplemental Web site will provide a collection of problems, some with solutions, slides for use in lectures, and programs with demos.
Approximation Theory and Spline Functions
Author: S.P. Singh
Publisher: Springer Science & Business Media
ISBN: 9400964668
Category : Mathematics
Languages : en
Pages : 481
Book Description
A NATO Advanced Study Institute on Approximation Theory and Spline Functions was held at Memorial University of Newfoundland during August 22-September 2, 1983. This volume consists of the Proceedings of that Institute. These Proceedings include the main invited talks and contributed papers given during the Institute. The aim of these lectures was to bring together Mathematicians, Physicists and Engineers working in the field. The lectures covered a wide range including ~1ultivariate Approximation, Spline Functions, Rational Approximation, Applications of Elliptic Integrals and Functions in the Theory of Approximation, and Pade Approximation. We express our sincere thanks to Professors E. W. Cheney, J. Meinguet, J. M. Phillips and H. Werner, members of the International Advisory Committee. We also extend our thanks to the main speakers and the invi ted speakers, whose contri butions made these Proceedings complete. The Advanced Study Institute was financed by the NATO Scientific Affairs Division. We express our thanks for the generous support. We wish to thank members of the Department of Mathematics and Statistics at MeMorial University who willingly helped with the planning and organizing of the Institute. Special thanks go to Mrs. Mary Pike who helped immensely in the planning and organizing of the Institute, and to Miss Rosalind Genge for her careful and excellent typing of the manuscript of these Proceedings.
Publisher: Springer Science & Business Media
ISBN: 9400964668
Category : Mathematics
Languages : en
Pages : 481
Book Description
A NATO Advanced Study Institute on Approximation Theory and Spline Functions was held at Memorial University of Newfoundland during August 22-September 2, 1983. This volume consists of the Proceedings of that Institute. These Proceedings include the main invited talks and contributed papers given during the Institute. The aim of these lectures was to bring together Mathematicians, Physicists and Engineers working in the field. The lectures covered a wide range including ~1ultivariate Approximation, Spline Functions, Rational Approximation, Applications of Elliptic Integrals and Functions in the Theory of Approximation, and Pade Approximation. We express our sincere thanks to Professors E. W. Cheney, J. Meinguet, J. M. Phillips and H. Werner, members of the International Advisory Committee. We also extend our thanks to the main speakers and the invi ted speakers, whose contri butions made these Proceedings complete. The Advanced Study Institute was financed by the NATO Scientific Affairs Division. We express our thanks for the generous support. We wish to thank members of the Department of Mathematics and Statistics at MeMorial University who willingly helped with the planning and organizing of the Institute. Special thanks go to Mrs. Mary Pike who helped immensely in the planning and organizing of the Institute, and to Miss Rosalind Genge for her careful and excellent typing of the manuscript of these Proceedings.
Approximation with Quasi-Splines
Author: G.H Kirov
Publisher: CRC Press
ISBN: 1000112322
Category : Mathematics
Languages : en
Pages : 260
Book Description
In the theory of splines, a function is approximated piece-wise by (usually cubic) polynomials. Quasi-splines is the natural extension of this, allowing us to use any useful class of functions adapted to the problem. Approximation with Quasi-Splines is a detailed account of this highly useful technique in numerical analysis. The book presents the requisite approximation theorems and optimization methods, developing a unified theory of one and several variables. The author applies his techniques to the evaluation of definite integrals (quadrature) and its many-variables generalization, which he calls "cubature." This book should be required reading for all practitioners of the methods of approximation, including researchers, teachers, and students in applied, numerical and computational mathematics.
Publisher: CRC Press
ISBN: 1000112322
Category : Mathematics
Languages : en
Pages : 260
Book Description
In the theory of splines, a function is approximated piece-wise by (usually cubic) polynomials. Quasi-splines is the natural extension of this, allowing us to use any useful class of functions adapted to the problem. Approximation with Quasi-Splines is a detailed account of this highly useful technique in numerical analysis. The book presents the requisite approximation theorems and optimization methods, developing a unified theory of one and several variables. The author applies his techniques to the evaluation of definite integrals (quadrature) and its many-variables generalization, which he calls "cubature." This book should be required reading for all practitioners of the methods of approximation, including researchers, teachers, and students in applied, numerical and computational mathematics.
Multivariate Splines
Author: Charles K. Chui
Publisher: SIAM
ISBN: 0898712262
Category : Mathematics
Languages : en
Pages : 192
Book Description
Subject of multivariate splines presented from an elementary point of view; includes many open problems.
Publisher: SIAM
ISBN: 0898712262
Category : Mathematics
Languages : en
Pages : 192
Book Description
Subject of multivariate splines presented from an elementary point of view; includes many open problems.
Box Splines
Author: Carl de Boor
Publisher: Springer Science & Business Media
ISBN: 1475722443
Category : Mathematics
Languages : en
Pages : 216
Book Description
Compactly supported smooth piecewise polynomial functions provide an efficient tool for the approximation of curves and surfaces and other smooth functions of one and several arguments. Since they are locally polynomial, they are easy to evaluate. Since they are smooth, they can be used when smoothness is required, as in the numerical solution of partial differential equations (in the Finite Element method) or the modeling of smooth sur faces (in Computer Aided Geometric Design). Since they are compactly supported, their linear span has the needed flexibility to approximate at all, and the systems to be solved in the construction of approximations are 'banded'. The construction of compactly supported smooth piecewise polynomials becomes ever more difficult as the dimension, s, of their domain G ~ IRs, i. e. , the number of arguments, increases. In the univariate case, there is only one kind of cell in any useful partition, namely, an interval, and its boundary consists of two separated points, across which polynomial pieces would have to be matched as one constructs a smooth piecewise polynomial function. This can be done easily, with the only limitation that the num ber of smoothness conditions across such a breakpoint should not exceed the polynomial degree (since that would force the two joining polynomial pieces to coincide). In particular, on any partition, there are (nontrivial) compactly supported piecewise polynomials of degree ~ k and in C(k-l), of which the univariate B-spline is the most useful example.
Publisher: Springer Science & Business Media
ISBN: 1475722443
Category : Mathematics
Languages : en
Pages : 216
Book Description
Compactly supported smooth piecewise polynomial functions provide an efficient tool for the approximation of curves and surfaces and other smooth functions of one and several arguments. Since they are locally polynomial, they are easy to evaluate. Since they are smooth, they can be used when smoothness is required, as in the numerical solution of partial differential equations (in the Finite Element method) or the modeling of smooth sur faces (in Computer Aided Geometric Design). Since they are compactly supported, their linear span has the needed flexibility to approximate at all, and the systems to be solved in the construction of approximations are 'banded'. The construction of compactly supported smooth piecewise polynomials becomes ever more difficult as the dimension, s, of their domain G ~ IRs, i. e. , the number of arguments, increases. In the univariate case, there is only one kind of cell in any useful partition, namely, an interval, and its boundary consists of two separated points, across which polynomial pieces would have to be matched as one constructs a smooth piecewise polynomial function. This can be done easily, with the only limitation that the num ber of smoothness conditions across such a breakpoint should not exceed the polynomial degree (since that would force the two joining polynomial pieces to coincide). In particular, on any partition, there are (nontrivial) compactly supported piecewise polynomials of degree ~ k and in C(k-l), of which the univariate B-spline is the most useful example.
Approximation Theory, Wavelets and Applications
Author: S.P. Singh
Publisher: Springer Science & Business Media
ISBN: 9401585776
Category : Mathematics
Languages : en
Pages : 580
Book Description
Approximation Theory, Wavelets and Applications draws together the latest developments in the subject, provides directions for future research, and paves the way for collaborative research. The main topics covered include constructive multivariate approximation, theory of splines, spline wavelets, polynomial and trigonometric wavelets, interpolation theory, polynomial and rational approximation. Among the scientific applications were de-noising using wavelets, including the de-noising of speech and images, and signal and digital image processing. In the area of the approximation of functions the main topics include multivariate interpolation, quasi-interpolation, polynomial approximation with weights, knot removal for scattered data, convergence theorems in Padé theory, Lyapunov theory in approximation, Neville elimination as applied to shape preserving presentation of curves, interpolating positive linear operators, interpolation from a convex subset of Hilbert space, and interpolation on the triangle and simplex. Wavelet theory is growing extremely rapidly and has applications which will interest readers in the physical, medical, engineering and social sciences.
Publisher: Springer Science & Business Media
ISBN: 9401585776
Category : Mathematics
Languages : en
Pages : 580
Book Description
Approximation Theory, Wavelets and Applications draws together the latest developments in the subject, provides directions for future research, and paves the way for collaborative research. The main topics covered include constructive multivariate approximation, theory of splines, spline wavelets, polynomial and trigonometric wavelets, interpolation theory, polynomial and rational approximation. Among the scientific applications were de-noising using wavelets, including the de-noising of speech and images, and signal and digital image processing. In the area of the approximation of functions the main topics include multivariate interpolation, quasi-interpolation, polynomial approximation with weights, knot removal for scattered data, convergence theorems in Padé theory, Lyapunov theory in approximation, Neville elimination as applied to shape preserving presentation of curves, interpolating positive linear operators, interpolation from a convex subset of Hilbert space, and interpolation on the triangle and simplex. Wavelet theory is growing extremely rapidly and has applications which will interest readers in the physical, medical, engineering and social sciences.
Lectures on Elliptic Boundary Value Problems
Author: Shmuel Agmon
Publisher: American Mathematical Soc.
ISBN: 0821849107
Category : Mathematics
Languages : en
Pages : 225
Book Description
This book, which is a new edition of a book originally published in 1965, presents an introduction to the theory of higher-order elliptic boundary value problems. The book contains a detailed study of basic problems of the theory, such as the problem of existence and regularity of solutions of higher-order elliptic boundary value problems. It also contains a study of spectral properties of operators associated with elliptic boundary value problems. Weyl's law on the asymptotic distribution of eigenvalues is studied in great generality.
Publisher: American Mathematical Soc.
ISBN: 0821849107
Category : Mathematics
Languages : en
Pages : 225
Book Description
This book, which is a new edition of a book originally published in 1965, presents an introduction to the theory of higher-order elliptic boundary value problems. The book contains a detailed study of basic problems of the theory, such as the problem of existence and regularity of solutions of higher-order elliptic boundary value problems. It also contains a study of spectral properties of operators associated with elliptic boundary value problems. Weyl's law on the asymptotic distribution of eigenvalues is studied in great generality.