Author: Theodore J. Rivlin
Publisher: Courier Corporation
ISBN: 9780486640693
Category : Mathematics
Languages : en
Pages : 164
Book Description
Mathematics of Computing -- Numerical Analysis.
An Introduction to the Approximation of Functions
Author: Theodore J. Rivlin
Publisher: Courier Corporation
ISBN: 9780486640693
Category : Mathematics
Languages : en
Pages : 164
Book Description
Mathematics of Computing -- Numerical Analysis.
Publisher: Courier Corporation
ISBN: 9780486640693
Category : Mathematics
Languages : en
Pages : 164
Book Description
Mathematics of Computing -- Numerical Analysis.
Approximation of Functions
Author: G. G. Lorentz
Publisher: American Mathematical Society
ISBN: 1470474948
Category : Mathematics
Languages : en
Pages : 200
Book Description
This is an easily accessible account of the approximation of functions. It is simple and without unnecessary details, but complete enough to include the classical results of the theory. With only a few exceptions, only functions of one real variable are considered. A major theme is the degree of uniform approximation by linear sets of functions. This encompasses approximations by trigonometric polynomials, algebraic polynomials, rational functions, and polynomial operators. The chapter on approximation by operators does not assume extensive knowledge of functional analysis. Two chapters cover the important topics of widths and entropy. The last chapter covers the solution by Kolmogorov and Arnol?d of Hilbert's 13th problem. There are notes at the end of each chapter that give information about important topics not treated in the main text. Each chapter also has a short set of challenging problems, which serve as illustrations.
Publisher: American Mathematical Society
ISBN: 1470474948
Category : Mathematics
Languages : en
Pages : 200
Book Description
This is an easily accessible account of the approximation of functions. It is simple and without unnecessary details, but complete enough to include the classical results of the theory. With only a few exceptions, only functions of one real variable are considered. A major theme is the degree of uniform approximation by linear sets of functions. This encompasses approximations by trigonometric polynomials, algebraic polynomials, rational functions, and polynomial operators. The chapter on approximation by operators does not assume extensive knowledge of functional analysis. Two chapters cover the important topics of widths and entropy. The last chapter covers the solution by Kolmogorov and Arnol?d of Hilbert's 13th problem. There are notes at the end of each chapter that give information about important topics not treated in the main text. Each chapter also has a short set of challenging problems, which serve as illustrations.
Rational Approximation of Real Functions
Author: P. P. Petrushev
Publisher: Cambridge University Press
ISBN: 9780521177405
Category : Mathematics
Languages : en
Pages : 388
Book Description
This 1987 book examines the approximation of real functions by real rational functions. These are a more convenient tool than polynomials, and interest in them was growing, especially after D. Newman's work in the mid-sixties. The authors present the basic achievements of the subject and also discuss some topics from complex rational approximation.
Publisher: Cambridge University Press
ISBN: 9780521177405
Category : Mathematics
Languages : en
Pages : 388
Book Description
This 1987 book examines the approximation of real functions by real rational functions. These are a more convenient tool than polynomials, and interest in them was growing, especially after D. Newman's work in the mid-sixties. The authors present the basic achievements of the subject and also discuss some topics from complex rational approximation.
Fourier Analysis and Approximation of Functions
Author: Roald M. Trigub
Publisher: Springer Science & Business Media
ISBN: 9781402023415
Category : Mathematics
Languages : en
Pages : 610
Book Description
In Fourier Analysis and Approximation of Functions basics of classical Fourier Analysis are given as well as those of approximation by polynomials, splines and entire functions of exponential type. In Chapter 1 which has an introductory nature, theorems on convergence, in that or another sense, of integral operators are given. In Chapter 2 basic properties of simple and multiple Fourier series are discussed, while in Chapter 3 those of Fourier integrals are studied. The first three chapters as well as partially Chapter 4 and classical Wiener, Bochner, Bernstein, Khintchin, and Beurling theorems in Chapter 6 might be interesting and available to all familiar with fundamentals of integration theory and elements of Complex Analysis and Operator Theory. Applied mathematicians interested in harmonic analysis and/or numerical methods based on ideas of Approximation Theory are among them. In Chapters 6-11 very recent results are sometimes given in certain directions. Many of these results have never appeared as a book or certain consistent part of a book and can be found only in periodics; looking for them in numerous journals might be quite onerous, thus this book may work as a reference source. The methods used in the book are those of classical analysis, Fourier Analysis in finite-dimensional Euclidean space Diophantine Analysis, and random choice.
Publisher: Springer Science & Business Media
ISBN: 9781402023415
Category : Mathematics
Languages : en
Pages : 610
Book Description
In Fourier Analysis and Approximation of Functions basics of classical Fourier Analysis are given as well as those of approximation by polynomials, splines and entire functions of exponential type. In Chapter 1 which has an introductory nature, theorems on convergence, in that or another sense, of integral operators are given. In Chapter 2 basic properties of simple and multiple Fourier series are discussed, while in Chapter 3 those of Fourier integrals are studied. The first three chapters as well as partially Chapter 4 and classical Wiener, Bochner, Bernstein, Khintchin, and Beurling theorems in Chapter 6 might be interesting and available to all familiar with fundamentals of integration theory and elements of Complex Analysis and Operator Theory. Applied mathematicians interested in harmonic analysis and/or numerical methods based on ideas of Approximation Theory are among them. In Chapters 6-11 very recent results are sometimes given in certain directions. Many of these results have never appeared as a book or certain consistent part of a book and can be found only in periodics; looking for them in numerous journals might be quite onerous, thus this book may work as a reference source. The methods used in the book are those of classical analysis, Fourier Analysis in finite-dimensional Euclidean space Diophantine Analysis, and random choice.
Approximation Theory and Approximation Practice, Extended Edition
Author: Lloyd N. Trefethen
Publisher: SIAM
ISBN: 1611975948
Category : Mathematics
Languages : en
Pages : 377
Book Description
This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the fields most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.
Publisher: SIAM
ISBN: 1611975948
Category : Mathematics
Languages : en
Pages : 377
Book Description
This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the fields most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.
Theory of Uniform Approximation of Functions by Polynomials
Author: Vladislav K. Dzyadyk
Publisher: Walter de Gruyter
ISBN: 3110208245
Category : Mathematics
Languages : en
Pages : 497
Book Description
A thorough, self-contained and easily accessible treatment of the theory on the polynomial best approximation of functions with respect to maximum norms. The topics include Chebychev theory, Weierstraß theorems, smoothness of functions, and continuation of functions.
Publisher: Walter de Gruyter
ISBN: 3110208245
Category : Mathematics
Languages : en
Pages : 497
Book Description
A thorough, self-contained and easily accessible treatment of the theory on the polynomial best approximation of functions with respect to maximum norms. The topics include Chebychev theory, Weierstraß theorems, smoothness of functions, and continuation of functions.
Theory of Approximation of Functions of a Real Variable
Author: A. F. Timan
Publisher: Elsevier
ISBN: 1483184811
Category : Mathematics
Languages : en
Pages : 644
Book Description
Theory of Approximation of Functions of a Real Variable discusses a number of fundamental parts of the modern theory of approximation of functions of a real variable. The material is grouped around the problem of the connection between the best approximation of functions to their structural properties. This text is composed of eight chapters that highlight the relationship between the various structural properties of real functions and the character of possible approximations to them by polynomials and other functions of simple construction. Each chapter concludes with a section containing various problems and theorems, which supplement the main text. The first chapters tackle the Weierstrass's theorem, the best approximation by polynomials on a finite segment, and some compact classes of functions and their structural properties. The subsequent chapters describe some properties of algebraic polynomials and transcendental integral functions of exponential type, as well as the direct theorems of the constructive theory of functions. These topics are followed by discussions of differential and constructive characteristics of converse theorems. The final chapters explore other theorems connecting the best approximations functions with their structural properties. These chapters also deal with the linear processes of approximation of functions by polynomials. The book is intended for post-graduate students and for mathematical students taking advanced courses, as well as to workers in the field of the theory of functions.
Publisher: Elsevier
ISBN: 1483184811
Category : Mathematics
Languages : en
Pages : 644
Book Description
Theory of Approximation of Functions of a Real Variable discusses a number of fundamental parts of the modern theory of approximation of functions of a real variable. The material is grouped around the problem of the connection between the best approximation of functions to their structural properties. This text is composed of eight chapters that highlight the relationship between the various structural properties of real functions and the character of possible approximations to them by polynomials and other functions of simple construction. Each chapter concludes with a section containing various problems and theorems, which supplement the main text. The first chapters tackle the Weierstrass's theorem, the best approximation by polynomials on a finite segment, and some compact classes of functions and their structural properties. The subsequent chapters describe some properties of algebraic polynomials and transcendental integral functions of exponential type, as well as the direct theorems of the constructive theory of functions. These topics are followed by discussions of differential and constructive characteristics of converse theorems. The final chapters explore other theorems connecting the best approximations functions with their structural properties. These chapters also deal with the linear processes of approximation of functions by polynomials. The book is intended for post-graduate students and for mathematical students taking advanced courses, as well as to workers in the field of the theory of functions.
Approximation Theory and Methods
Author: M. J. D. Powell
Publisher: Cambridge University Press
ISBN: 9780521295147
Category : Mathematics
Languages : en
Pages : 356
Book Description
Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.
Publisher: Cambridge University Press
ISBN: 9780521295147
Category : Mathematics
Languages : en
Pages : 356
Book Description
Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.
Sparse Polynomial Approximation of High-Dimensional Functions
Author: Ben Adcock
Publisher: Society for Industrial and Applied Mathematics (SIAM)
ISBN: 9781611976878
Category : Approximation theory
Languages : en
Pages : 0
Book Description
"This is a book about polynomial approximation in high dimensions"--
Publisher: Society for Industrial and Applied Mathematics (SIAM)
ISBN: 9781611976878
Category : Approximation theory
Languages : en
Pages : 0
Book Description
"This is a book about polynomial approximation in high dimensions"--
A Course in Approximation Theory
Author: Elliott Ward Cheney
Publisher: American Mathematical Soc.
ISBN: 0821847988
Category : Mathematics
Languages : en
Pages : 379
Book Description
This textbook is designed for graduate students in mathematics, physics, engineering, and computer science. Its purpose is to guide the reader in exploring contemporary approximation theory. The emphasis is on multi-variable approximation theory, i.e., the approximation of functions in several variables, as opposed to the classical theory of functions in one variable. Most of the topics in the book, heretofore accessible only through research papers, are treated here from the basics to the currently active research, often motivated by practical problems arising in diverse applications such as science, engineering, geophysics, and business and economics. Among these topics are projections, interpolation paradigms, positive definite functions, interpolation theorems of Schoenberg and Micchelli, tomography, artificial neural networks, wavelets, thin-plate splines, box splines, ridge functions, and convolutions. An important and valuable feature of the book is the bibliography of almost 600 items directing the reader to important books and research papers. There are 438 problems and exercises scattered through the book allowing the student reader to get a better understanding of the subject.
Publisher: American Mathematical Soc.
ISBN: 0821847988
Category : Mathematics
Languages : en
Pages : 379
Book Description
This textbook is designed for graduate students in mathematics, physics, engineering, and computer science. Its purpose is to guide the reader in exploring contemporary approximation theory. The emphasis is on multi-variable approximation theory, i.e., the approximation of functions in several variables, as opposed to the classical theory of functions in one variable. Most of the topics in the book, heretofore accessible only through research papers, are treated here from the basics to the currently active research, often motivated by practical problems arising in diverse applications such as science, engineering, geophysics, and business and economics. Among these topics are projections, interpolation paradigms, positive definite functions, interpolation theorems of Schoenberg and Micchelli, tomography, artificial neural networks, wavelets, thin-plate splines, box splines, ridge functions, and convolutions. An important and valuable feature of the book is the bibliography of almost 600 items directing the reader to important books and research papers. There are 438 problems and exercises scattered through the book allowing the student reader to get a better understanding of the subject.