Author: Willi Freeden
Publisher: Birkhäuser
ISBN: 3319571818
Category : Mathematics
Languages : en
Pages : 938
Book Description
Written by leading experts, this book provides a clear and comprehensive survey of the “status quo” of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today’s least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.
Handbook of Mathematical Geodesy
Author: Willi Freeden
Publisher: Birkhäuser
ISBN: 3319571818
Category : Mathematics
Languages : en
Pages : 938
Book Description
Written by leading experts, this book provides a clear and comprehensive survey of the “status quo” of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today’s least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.
Publisher: Birkhäuser
ISBN: 3319571818
Category : Mathematics
Languages : en
Pages : 938
Book Description
Written by leading experts, this book provides a clear and comprehensive survey of the “status quo” of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today’s least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.
Approximation Methods in Geodesy
Author: Helmut Moritz
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 316
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 316
Book Description
Mathematical Foundation of Geodesy
Author: Kai Borre
Publisher: Springer Science & Business Media
ISBN: 3540337679
Category : Science
Languages : en
Pages : 415
Book Description
This volume contains selected papers by Torben Krarup, one of the most important geodesists of the 20th century. The collection includes the famous booklet "A Contribution to the Mathematical Foundation of Physical Geodesy" from 1969, the unpublished "Molodenskij letters" from 1973, the final version of "Integrated Geodesy" from 1978, "Foundation of a Theory of Elasticity for Geodetic Networks" from 1974, as well as trend-setting papers on the theory of adjustment.
Publisher: Springer Science & Business Media
ISBN: 3540337679
Category : Science
Languages : en
Pages : 415
Book Description
This volume contains selected papers by Torben Krarup, one of the most important geodesists of the 20th century. The collection includes the famous booklet "A Contribution to the Mathematical Foundation of Physical Geodesy" from 1969, the unpublished "Molodenskij letters" from 1973, the final version of "Integrated Geodesy" from 1978, "Foundation of a Theory of Elasticity for Geodetic Networks" from 1974, as well as trend-setting papers on the theory of adjustment.
Geodesy
Author: Wolfgang Torge
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110723409
Category : Technology & Engineering
Languages : en
Pages : 716
Book Description
The fifth edition of this textbook has been completely revised and significantly extended in order to reflect the revolution of geodetic technologies, methods and applications during the last decade. The Global Geodetic Observing System established by the IAG utilizes a variety of techniques to determine the geometric shape of the earth and its kinematics, the variations of earth rotation, and the earth’s gravity field. The societal importance of geodetic products was highlighted by the UN resolution on the Global Geodetic Reference Frame. In this context, both space and terrestrial techniques play a fundamental role. Recent space missions are monitoring climate-relevant processes such as mass transport in the Earth system and sea level changes. The analysis of the time variation of the geodetic products provides the link to neighboring geosciences and contributes to proper modelling of geodynamic processes. New satellite mission concepts and novel technologies such as quantum gravimetry and optical clocks show great potential to further improve the geodetic observing system in the future. The book especially addresses graduate students in the fields of geodesy, geophysics, surveying engineering, geomatics, and space navigation. It should also serve as a reference for geoscientists and engineers facing geodetic problems in their professional work. The book follows the principal directions of geodesy, providing the theoretical background as well as the principles of measurement and evaluation methods, which is enriched with numerous figures. An extensive reference list supports further studies.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110723409
Category : Technology & Engineering
Languages : en
Pages : 716
Book Description
The fifth edition of this textbook has been completely revised and significantly extended in order to reflect the revolution of geodetic technologies, methods and applications during the last decade. The Global Geodetic Observing System established by the IAG utilizes a variety of techniques to determine the geometric shape of the earth and its kinematics, the variations of earth rotation, and the earth’s gravity field. The societal importance of geodetic products was highlighted by the UN resolution on the Global Geodetic Reference Frame. In this context, both space and terrestrial techniques play a fundamental role. Recent space missions are monitoring climate-relevant processes such as mass transport in the Earth system and sea level changes. The analysis of the time variation of the geodetic products provides the link to neighboring geosciences and contributes to proper modelling of geodynamic processes. New satellite mission concepts and novel technologies such as quantum gravimetry and optical clocks show great potential to further improve the geodetic observing system in the future. The book especially addresses graduate students in the fields of geodesy, geophysics, surveying engineering, geomatics, and space navigation. It should also serve as a reference for geoscientists and engineers facing geodetic problems in their professional work. The book follows the principal directions of geodesy, providing the theoretical background as well as the principles of measurement and evaluation methods, which is enriched with numerous figures. An extensive reference list supports further studies.
Mathematical and Numerical Techniques in Physical Geodesy
Author: Hans Sünkel
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 572
Book Description
Physical Geodesy, Admont, Austria, August 25 to September 5, 1986
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 572
Book Description
Physical Geodesy, Admont, Austria, August 25 to September 5, 1986
Spectral Methods in Geodesy and Geophysics
Author: Christopher Jekeli
Publisher: CRC Press
ISBN: 1482245264
Category : Mathematics
Languages : en
Pages : 431
Book Description
The text develops the principal aspects of applied Fourier analysis and methodology with the main goal to inculcate a different way of perceiving global and regional geodetic and geophysical data, namely from the perspective of the frequency, or spectral, domain rather than the spatial domain. The word "methods" in the title is meant to convey that the transformation of a geophysical signal into the spectral domain can be applied for purposes of analysis as well as rapid computation. The text is written for graduate students; however, Chapters 1 through 4 and parts of 5 can also benefit undergraduates who have a solid and fluent knowledge of integral and differential calculus, have some statistical background, and are not uncomfortable with complex numbers. Concepts are developed by starting from the one-dimensional domain and working up to the spherical domain, which is part of every chapter. Many concepts are illustrated graphically with actual geophysical data primarily from signals of gravity, magnetism, and topography.
Publisher: CRC Press
ISBN: 1482245264
Category : Mathematics
Languages : en
Pages : 431
Book Description
The text develops the principal aspects of applied Fourier analysis and methodology with the main goal to inculcate a different way of perceiving global and regional geodetic and geophysical data, namely from the perspective of the frequency, or spectral, domain rather than the spatial domain. The word "methods" in the title is meant to convey that the transformation of a geophysical signal into the spectral domain can be applied for purposes of analysis as well as rapid computation. The text is written for graduate students; however, Chapters 1 through 4 and parts of 5 can also benefit undergraduates who have a solid and fluent knowledge of integral and differential calculus, have some statistical background, and are not uncomfortable with complex numbers. Concepts are developed by starting from the one-dimensional domain and working up to the spherical domain, which is part of every chapter. Many concepts are illustrated graphically with actual geophysical data primarily from signals of gravity, magnetism, and topography.
Inverse Problem Theory and Methods for Model Parameter Estimation
Author: Albert Tarantola
Publisher: SIAM
ISBN: 0898715725
Category : Mathematics
Languages : en
Pages : 348
Book Description
This book proposes a general approach to the basic difficulties appearing in the resolution of inverse problems.
Publisher: SIAM
ISBN: 0898715725
Category : Mathematics
Languages : en
Pages : 348
Book Description
This book proposes a general approach to the basic difficulties appearing in the resolution of inverse problems.
Optimization and Design of Geodetic Networks
Author: Erik W. Grafarend
Publisher: Springer Science & Business Media
ISBN: 3642706592
Category : Science
Languages : en
Pages : 621
Book Description
During the period April 25th to May 10th, 1984 the 3rd Course of the International School of Advanced Geodesy entitled "Optimization and Design of Geodetic Networks" took place in Erice. The main subject of the course is clear from the title and consisted mainly of that particular branch of network analysis, which results from applying general concepts of mathematical optimization to the design of geodetic networks. As al ways when dealing with optimization problems, there is an a-priori choice of the risk (or gain) function which should be minimized (or maximized) according to the specific interest of the "designer", which might be either of a scientific or of an economic nature or even of both. These aspects have been reviewed in an intro ductory lecture in which the particular needs arising in a geodetic context and their analytical representations are examined. Subsequently the main body of the optimization problem, which has been conven tionally divided into zero, first, second and third order design problems, is presented. The zero order design deals with the estimability problem, in other words with the definition of which parameters are estimable from a given set of observa tions. The problem results from the fact that coordinates of points are not univocally determined from the observations of relative quantities such as angles and distances, whence a problem of the optimal choice of a reference system, the so-called "datum problem" arises.
Publisher: Springer Science & Business Media
ISBN: 3642706592
Category : Science
Languages : en
Pages : 621
Book Description
During the period April 25th to May 10th, 1984 the 3rd Course of the International School of Advanced Geodesy entitled "Optimization and Design of Geodetic Networks" took place in Erice. The main subject of the course is clear from the title and consisted mainly of that particular branch of network analysis, which results from applying general concepts of mathematical optimization to the design of geodetic networks. As al ways when dealing with optimization problems, there is an a-priori choice of the risk (or gain) function which should be minimized (or maximized) according to the specific interest of the "designer", which might be either of a scientific or of an economic nature or even of both. These aspects have been reviewed in an intro ductory lecture in which the particular needs arising in a geodetic context and their analytical representations are examined. Subsequently the main body of the optimization problem, which has been conven tionally divided into zero, first, second and third order design problems, is presented. The zero order design deals with the estimability problem, in other words with the definition of which parameters are estimable from a given set of observa tions. The problem results from the fact that coordinates of points are not univocally determined from the observations of relative quantities such as angles and distances, whence a problem of the optimal choice of a reference system, the so-called "datum problem" arises.
Handbook of Geodesy
Author: Wilhelm Jordan
Publisher:
ISBN:
Category : Geodesy
Languages : en
Pages : 594
Book Description
Publisher:
ISBN:
Category : Geodesy
Languages : en
Pages : 594
Book Description
Relativistic Geodesy
Author: Dirk Puetzfeld
Publisher: Springer
ISBN: 3030115003
Category : Science
Languages : en
Pages : 485
Book Description
Due to steadily improving experimental accuracy, relativistic concepts – based on Einstein’s theory of Special and General Relativity – are playing an increasingly important role in modern geodesy. This book offers an introduction to the emerging field of relativistic geodesy, and covers topics ranging from the description of clocks and test bodies, to time and frequency measurements, to current and future observations. Emphasis is placed on geodetically relevant definitions and fundamental methods in the context of Einstein’s theory (e.g. the role of observers, use of clocks, definition of reference systems and the geoid, use of relativistic approximation schemes). Further, the applications discussed range from chronometric and gradiometric determinations of the gravitational field, to the latest (satellite) experiments. The impact of choices made at a fundamental theoretical level on the interpretation of measurements and the planning of future experiments is also highlighted. Providing an up-to-the-minute status report on the respective topics discussed, the book will not only benefit experts, but will also serve as a guide for students with a background in either geodesy or gravitational physics who are interested in entering and exploring this emerging field.
Publisher: Springer
ISBN: 3030115003
Category : Science
Languages : en
Pages : 485
Book Description
Due to steadily improving experimental accuracy, relativistic concepts – based on Einstein’s theory of Special and General Relativity – are playing an increasingly important role in modern geodesy. This book offers an introduction to the emerging field of relativistic geodesy, and covers topics ranging from the description of clocks and test bodies, to time and frequency measurements, to current and future observations. Emphasis is placed on geodetically relevant definitions and fundamental methods in the context of Einstein’s theory (e.g. the role of observers, use of clocks, definition of reference systems and the geoid, use of relativistic approximation schemes). Further, the applications discussed range from chronometric and gradiometric determinations of the gravitational field, to the latest (satellite) experiments. The impact of choices made at a fundamental theoretical level on the interpretation of measurements and the planning of future experiments is also highlighted. Providing an up-to-the-minute status report on the respective topics discussed, the book will not only benefit experts, but will also serve as a guide for students with a background in either geodesy or gravitational physics who are interested in entering and exploring this emerging field.